SPEAR Maps of Emission from Hot Diffuse Gas in our Galaxy

E.J. Korpela, J. Kregenow, M. M. Sirk, J. Edelstein, J. Adolfo University of California, Berkeley K. Min, K. Ryu, J.-H. Shinn Korea Advance Institute of Science and Technology Korea Astronomy and Space Science Institute W. Han, D-H Lee

Abstract

The distribution of a low-density hot (10^5-10^6 K) phase of the interstellar medium conveys the character and evolution of diffuse matter in the Galaxy. This difficult to observe component of the ISM emits mainly in the far-ultraviolet (FUV) (912-1800 A) band. We present spectral maps of FUV emission lines from highly ionized species (CIII, CIV, OIII, OIV, OVI, and HeII) likely to exist in the hot phase of the ISM. The maps were obtained using an orbital spectrometer, SPEAR (or FIMS), that was launched in 2003 and has observed the FUV sky with a spectral resolution of ~500 and an angular resolution of 10'.

Funded NASA Grant NAG 5-5355 and by the Korean Ministry of Science and Technology.

Mapping Procedure The maps were created using a nested adaptive binning method. For each scale (starting at 15') fits of the line emission, scattered stellar spectra, and scattered lines. The line values from pixels where significant detection were made were transferred to the result maps. The remaining pixels were then rebinned by a scale factor of two. This process was repeated until the scale factor reached 256. Significance limits used at each scale were set such that less than one spurious detection would be expected at each scale.

The in the scaled maps, the color black represents regions where no detection of the line was made. Grey regions represent areas with no exposure and regions where stars were removed.

Stellar Continuum

In the long wavelength band (λ >1300), the dominant background component is dust scattered stellar continuum. This continuum contains absorption features for some of the of the lines we are fitting. For these maps we have used an upper main sequence luminosity function and a set of Kurucz model stellar spectra to generate a single spectrum that was used for these fits. Because of this there are likely to be systematic errors in the Galactic plane for CIV map. However, the high correlation between the CIV and the maps of the semi-forbidden OIII] and OIV] lines gives us confidence that these errors are relatively small. We tend to rectify this potential issue with more accurate modeling of the scattered continuum. See poster 17.07 for more details on continuum modeling

CIII λ 977

Detection Significance The figure to the right shows a typical 3σ fit to the CIV $\lambda\lambda$ 1550 line. The line at 1533 Å is the Sill* resonance line. The dark line is the best fit model. The red line shows

References:

Edelstein et al. 2006 ApJ, 644, L153 Edelstein et al. 2006 ApJ, 644, L159 Korpela et al. 2006 ApJ, 644, L163

the underlying scattered stellar continuum. The blue line shows the best fit that could be made by assuming a CIV $\lambda\lambda$ 1550 intensity of zero. Detection significance is determined by comparing the χ^2 of the fits with and without the line.