
PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 1

PCI CD and PCI CDa

Revision: I
December 2004

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 2

Control Information
Control Item Details

Document Owner Mark Mason/Dan Boer
Information Label EDT Public
Supersedes None
File Location frm:/pcicd/pcicd.doc
Document Number 008-00965-06

Revision History
Revision Date Revision Description Originator
Draft 20-Aug-03 Convert from FrameMaker to Word S Vasil
A 11-Jan-04 Added Input/Output section; general cleanup S Vasil
B 18-Mar-04 Updated “Upgrading the Firmware” section. Added CDa

pinout.
R Henderson
D Boer

C 29-Mar-04 Fixed PCI CD pinout (pcd8_src.bit) D Boer
D 19-Apr-04 Deleted Output Disable on page 64 D Boer
E 21-Apr-04 Fixed PCI CDa pinouts D Boer
F 05-May-04 Added PIO registers, 0x08 and 0x09 D Boer
G 09-Sep-04 Fixed pinout D Boer
H 07-Oct-04 Updated Input/Output section M Mason
I 16-Dec-04 Minor fixes; added line drawing for jumpers S Vasil

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 3

The information in this document is subject to change without notice and does not represent a
commitment on the part of Engineering Design Team, Inc. The software described in this document is
furnished under a license agreement or nondisclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement.
Engineering Design Team, Inc. (“EDT”), makes no warranties, express or implied, including without
limitation the implied warranties of merchantibility and fitness for a particular purpose, regarding the
software described in this document (“the software”). EDT does not warrant, guarantee, or make any
representations regarding the use or the results of the use of the software in terms of its correctness,
accuracy, reliability, currentness, or otherwise. The entire risk as to the results and performance of the
software is assumed by you. The exclusion of implied warranties is not permitted by some
jurisdictions. The above exclusion may not apply to you.
In no event will EDT, its directors, officers, employees, or agents be liable to you for any
consequential, incidental, or indirect damages (including damages for loss of business profits, business
interruption, loss of business information, and the like) arising out of the use or inability to use the
software even if EDT has been advised of the possibility of such damages. Because some jurisdictions
do not allow the exclusion or limitation of liability for consequential or incidental damages, the above
limitations may not apply to you. EDT’s liability to you for actual damages for any cause whatsoever,
and regardless of the form of the action (whether in contract, tort [including negligence], product
liability or otherwise), will be limited to $50.
No part of this manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, without the express written agreement of Engineering Design Team, Inc.
© Copyright Engineering Design Team, Inc. 1997–2005. All rights reserved.
Sun, SunOS, SBus, SPARC, and SPARCstation are trademarks of Sun Microsystems, Incorporated.
Windows NT/2000/XP is a registered trademark of Microsoft Corporation.
Intel and Pentium are registered trademarks of Intel Corporation.
UNIX is a registered trademark of X/Open Company, Ltd.
OPEN LOOK is a registered trademark of UNIX System Laboratories, Inc.
Red Hat is a trademark of Red Hat Software, Inc.
IRex is a trademark of Silicon Graphics, Inc.
AIX is a registered trademark of International Business Machines Corporation.
Xilinx is a registered trademark of Xilinx, Inc.
Kodak is a trademark of Eastman Kodak Company.
The software described in this manual is based in part on the work of the independent JPEG Group.
EDT and Engineering Design Team are trademarks of Engineering Design Team, Inc.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 4

Contents
Overview ..5

Features ..5

Installation ...6

Verifying the Installation...7
Configuring the PCI CD ...7

Configuration Utility: initpcd...8
PCI CD ..9
PCI CDa ..9

Building the Sample Programs ..9
Uninstalling ..9
Upgrading the Firmware ..10

Input and Output ...12
Elements of EDT Interface Applications ..12
FIFO Flushing ..14
Multi-Threaded Programming ..14
DMA Library Routines..15
EDT Message Handler Library...49

Message Definitions ..49
Files...50

PCI CD Output Clock Generation...55

PCI CDa Output Clock Generation...59

Hardware Interface Protocol...61
Electrical Interface ...61
Signals...63
Timing..64

Connector Pinout ..65

Registers..71
Configuration Space ..71
PCI Local Bus Addresses ..72
Scatter-gather DMA ...73

Performing DMA..74
Flash ROM Access Registers ..79
Interrupt Registers ...81
Remote Xilinx Registers ..82

Specifications..91

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 5

Overview
The PCI Bus Configurable DMA (PCI CD) board is a single-slot, 16-bit parallel input/output interface
for PCI bus-based computer systems. It is designed for continuous input or output between a user
device and PCI bus host memory. This interface is typically used to move data between a PCI bus host
computer and devices such as scanners, plotters, imaging devices, or research prototypes. The PCI CD
uses a simple synchronous protocol for transferring data.
The CDa is very similar to the PCI CD, with the following differences:
• The PCI CDa uses the PCI SS-style phase-locked loop (PLL) and DMA engine.
• The PCI CDa comes standard with an XC2S100e user interface Xilinx; an XC2S600e Xilinx is

optional.
• The PCI CD I/O is either RS422 or LVDS.
• FIFOs are internal to the Xilinx FPGA.
• The PCI CDa will operate in 66 MHz PCI slots with transfer rates up to 210 megabytes per second.

It uses the same host software as the PCI CD.

Features
• The PCI CD/CDa supports scatter-gather Direct Memory Access (DMA) in hardware, adapting to

the memory management model of the host architecture. It includes a software driver and software
library that enable applications to access the PCI CD/CDa and transfer data continuously or in
bursts across the PCI CD/CDa interface using EDT library calls.

• The interface is synchronous, meaning all data and control signals are transmitted with a clock
signal. Either the PCI CD/CDa interface or the external device can generate receive or transmit
timing, or each can generate its own transmit timing.

• The PCI CD/CDa RS422 oscillator operates at 10 MHz or 20 megabytes per second. The PLL can
be selected as the clock source, which can be programmed at various speeds. The transfer rate is
limited by the RS422 interface.

• The PCI CD PECL (PCI CD-40) oscillator operates at 20 MHz or 40 megabytes per second. The
PLL can be selected as the clock source, which can be programmed at various speeds. The transfer
rate is limited by the PECL interface.

• The PCI CD/CDa LVDS oscillator operates at 30 MHz or 60 megabytes per second. The clock
operates at various speeds depending on programming. The transfer rate is limited by the LVDS
interface.

• The DMA Engine on all PCI CD boards is up to 80 megabytes per second. The DMA engine on all
CDa boards is up to 210 megabytes per second.

• All CD/CDa boards use 4 KB input and output FIFOs, and all signals are differential.
• The input and output FIFO buffers smooth data transfer between the PCI bus and the user device,

accommodating data during the transition from one DMA to the next. DMA transfers are queued in
hardware, minimizing the amount of FIFO required.

This manual describes the operation of the PCI CD/CDa with the UNIX-based and Windows operating
systems.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 6

 Installation
If you are using a Dell computer, you should be aware that for some models, Dell recommends high
data rate cards (such as video and frame grabbers) be placed in one of the first two slots (closest to the
AGP connector). The other two PCI bus slots are only recommended for lower speed devices such as
audio devices or modems.
Caution: Be sure to use appropriate static protection to prevent damaging your PCI CD/CDa.
Other computer manufacturers may have similar requirements as Dell. Consult your computer
manufacturer's documentation for more information.
After installing the PCI CD/CDa, verify the installation, configure the device, and build the sample
programs (optional). Instructions for uninstalling the software or upgrading the firmware are on page 9.
For complete instructions regarding PCI board installation, see your computer manufacturer’s manual.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 7

Verifying the Installation
To verify that installation was successful and that the PCI CD/CDa is operating correctly:
1. Run Pcicd Utilities (Windows NT) or cd to /opt/EDTpcd (UNIX).
2. At the command prompt, enter:

xtest 4096

Outcome: The PCI CD/CDa returns test status information. You will be prompted to press Return at
certain steps. The following is an example of typical behavior, although details will vary:

reading 4096 words
buf at 820000
testing dirreg at 4 4
testing dirout at 8 8
testing dirin at 8 c
testing ctlout at a a
testing ctlin at a e
Calling DMA read 8192 at 820000
return to do read:
read returned length 8192
Done.
checking data
4096 words 0 errors
buf 0 820000
buf 1 920000
reading 100 buffers of 1048576 bytes from unit 0 with 2 bufs
return to start: starting read at 820000
starting read at 920000
hit return to continue:
counter0 4628 2362958141 counter1 4628 3122437420 freq 0 266230000
dtime 759479279.000000 ticktime 266230000.000000
time is 2.852719 sec
36757077.671371 bytes/sec

Configuring the PCI CD
The PCI CD/CDa can be configured to run in several modes. Before running the device, decide which
of these modes is appropriate for your application and configure it accordingly. Configure the PCI
CD/CDa by downloading a bitfile to the Xilinx field-programmable gate array (FPGA).
To configure the PCI CD/CDa:
1. Run Pcicd Utilities (Windows NT) or cd to /opt/EDTpcd (UNIX).
2. At the command prompt, enter:

pcdrequest

3. Read the description of the signals and options.
4. Enter the associated option number (UNIX-based systems), or click the radio button next to the

desired mode of operation and then click OK (Windows NT systems).
The pcdrequest command creates a script or batch file pcdload that contains the commands
needed to download the appropriate bitfile into the FPGA. The pcdload command runs immediately,
as well as whenever the computer is rebooted.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 8

To reselect the default Xilinx bitfile at a later time, rerun pcdrequest, or edit the pcdload script
file by hand.
Note: xtest downloads its own test bitfile automatically; after running xtest, run pcdload to
reload the default bitfile.
The PCI CD/CDa boards are synchronous interfaces—they send a clock signal with all data and control
signals. The PCI CD stores inputs only at the rising edge of the receive timing (RXT) signal that comes
from the user device. The user device stores outputs from the PCI CD only at the rising edge of the
transmit timing (TXT) signal. The PCI CD/CDa always outputs the TXT signal, but the internal source
of the signal can be either the RXT from the user device or an internal oscillator on PLL in the PCI
CD/CDa. If an internal oscillator is used, its rate is 10 MHz for the PCI CD/CDa RS422, 20 MHz for
the PCI CD PECL, and 30 MHz for the PCI CD/CDa LVDS.

Configuration Utility: initpcd
EDT supplies a board configuration utility with your PCD driver called initpcd. This utility inputs a
simple text configuration file to set up the PCI CD/CDa boards, as well as any other board that uses the
PCD driver. Use initpcd to reliably and consistently configure your PCD boards and to eliminate
messy configuration code from your applications.
Complete documentation of the initpcd command set is included as the first comment in the source
file initpcd.c. Several .cfg files are also included in the PCD driver directory as examples.
A typcial initpcd .cfg script performs the following operations:
• Loads a specified firmware bitfile.
• Sets clock speeds on available PLL clocks.
• Sets any configuration registers, such as channel enable and direction bits, DMA mapping

registers, and any other arbitrary register, including customer-defined registers.
• Sets bit order, byte order, and short word order supported in the EDT firmware.
• Flushes the user interface FIFO to initialize the user interface firmware.
The following is an example of a simple PCI CDa configuration file:

bitfile: pcda.bit

Enable interface Xilinx
command_reg: 0x08

Enable and set the onboard PLL clock generator to 30MHz
funct_reg: 0x80
run_command: set_ss_vco -F 30000000.0 0

Alternatively setting interface register 0x0f to 0x02 sends
RXT to TXT.
intfc_reg: 0x0f 0x00
#intfc_reg: 0x0f 0x02

Byteswap and shortswap usually 1 for Sun, 0 for Intel.
byteswap_sun: 1
shortswap_sun: 1
byteswap_x86: 0
shortswap_x86: 0

flush_fifo: 1

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 9

PCI CD
You must choose the source for the TXT signal when the driver is loaded. We recommend using the
RXT input for TXT timing. Even if the PCI CD internal oscillator is used to time the user device, the
user device can use the PCI CD signal SENDT (send timing) to drive device outputs. It can then be sent
back as the RXT signal.
For most installations, choose either external clock with TXT looped from RXT, or internal clock from
the PCI CD. For the SSD4 option, choose from one, two, or four input channels, or one input and one
output channel.

PCI CDa
PCI CDa currently has only a 16-bit parallel interface and a 16-channel synchronous serial interface.

Building the Sample Programs
UNIX-based Systems
To build any of the example programs on UNIX-based systems, enter the command:

make program name

where file is the name of the example program you wish to install.
To build and install all the example programs, enter the command:

make

Outcome: All example programs display a message that explains their usage when you enter their
names without parameters.

Windows NT Systems
To build any of the example programs on Windows NT systems:
1. Run pcicd Utilities.
2. Enter the command:

nmake program.exe

where file is the name of the example program you wish to build.
To build and install all the example programs, simply enter the command:

nmake

Outcome: All example programs display a message that explains their usage when you enter their
names without parameters.
Note: You can also build the sample programs by setting up a project in Windows Visual C++.

Uninstalling
Solaris Systems
To remove the PCI CD/CDa driver on Solaris systems:
1. Become root or superuser.
2. Enter:

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 10

pkgrm EDTpcd

For further details, consult your operating system documentation, or call Engineering Design Team.

Linux Systems
To remove the PCI CD/CDa driver on Linux systems:
1. Enter: cd /opt/EDTpcd
2. Enter: make unload
3. Enter: cd /
4. Enter: rm –rf /opt/EDTpcd

Windows NT Systems
To remove the PCI CD/CDa toolkit on Windows NT systems, use the Windows NT Add/Remove
utility. For further details, consult your Windows NT documentation.
You can always get the most recent update of the software from our web site, www.edt.com. See the
document titled Contact Us.

Upgrading the Firmware
Field upgrades to the PCI firmware may occasionally be necessary when upgrading to a new device
driver.
The Xilinx file is downloaded to the board’s PCI interface Xilinx PROM using the pciload program:

1. Navigate to the directory in which you installed the driver (for UNIX-based systems, usually
/opt/EDTpcd; for Windows, usually C:\EDT\pcd).

2. At the prompt, enter:
pciload verify

This will compare the current PCI Xilinx file in the package with what is currently on the board’s
PROM.
Note: If more than one board is installed on a system, use the following, where N is the board unit
number:

pciload –u N verify

Outcome: Dates and revision numbers of the PROM and File ID will be displayed. If these
numbers match, there is no need for a field upgrade. If they differ, upgrade the flash PROM as
follows:
a. At the prompt, enter:

pciload update

b. Shut down the operating system and turn the host computer off and then back on again. The
board reloads firmware from flash ROM only during power-up. Therefore, after running
pciload, the new bit file is not in the Xilinx until the system has been power-cycled; simply
rebooting is not adequate.

To just see what boards are in the system, run pciload without any arguments:
pciload

To see other pciload options, run:

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 11

pciload help

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 12

Input and Output
The PCI CD/CDa device driver can perform two kinds of DMA transfers: continuous and
noncontinuous.
To perform continuous transfers, use ring buffers. The ring buffers are a set of buffers that applications
can access continuously, reading and writing as required. When the last buffer in the set has been
accessed, the application then cycles back to the first buffer. See
edt_configure_ring_buffers for a complete description of the ring buffer parameters that can
be configured. See the sample programs simple_getdata.c and simple_putdata.c
distributed with the driver for examples of using the ring buffers.
For noncontinuous transfers, the driver uses DMA system calls read and write. Each read and
write system call performs a single, noncontinuous DMA transfer.
Note: For portability, use the library calls edt_reg_read, edt_reg_write, edt_reg_or, or
edt_reg_and to read or write the hardware registers rather than ioctls.

Elements of EDT Interface Applications
Applications for performing continuous transfers typically include the following elements:

#include "edtinc.h"

main()
{

EdtDev *edt_p = edt_open("pcd", 0) ;
char *buf_ptr; int outfd = open("outfile", 1) ;

/* Configure a ring buffer with four 1MB buffers */
edt_configure_ring_buffers(edt_p, 1024*1024, 4, EDT_READ, NULL) ;

/* start 4 buffers */
edt_start_buffers(edt_p, 4) ;

/* This loop will capture data indefinitely, but the write()
 * (or whatever processing on the data) must be able to keep up.
 */
while ((buf_ptr = edt_wait_for_buffers(edt_p, 1)) != NULL)
{

write(outfd, buf_ptr, 1024*1024) ;
edt_start_buffers(edt_p, 1) ;

}
edt_close(edt_p) ;

}

Applications for performing noncontinuous transfers typically include the following elements. This
example opens a specific DMA channel with edt_open_channel, assuming that a multi-channel
Xilinx firmware file has been loaded:

#include "edtinc.h"

main()

{

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 13

EdtDev *edt_p = edt_open_channel("pcd", 1, 2) ;
char buf[1024] ;
int numbytes, outfd = open("outfile", 1) ;
/*
 * Because read()s are noncontinuous, unless is there hardware
 * handshaking there will be gaps in the data between each read().
 */
while ((numbytes = edt_read(edt_p, buf, 1024)) > 0)

write(outfd, buf, numbytes) ;
edt_close(edt_p) ;

}

You can use ring buffer mode for real-time data capture using a small number of buffers (usually four
of 1 MB) configured in a round-robin data FIFO. During capture, the application must be able to
transfer or process the data before data acquisition wraps around and overwrites the buffer currently
being processed.
The example below shows real-time data capture using ring buffers, although it includes no error
checking. In this example, process_data(bufptr) must execute in the same amount of time it
takes DMA to fill a single buffer or faster.
#include "edtinc.h"

main()
{

EdtDev *edt_p = edt_open("pcd", 0) ;

/* Configure four 1 MB buffers:
 * one for DMA
 * one for the second DMA register on most EDT boards
 * one for "process_data(bufptr)" to work on
 * one to keep DMA away from "process_data()"
 */
edt_configure_ring_buffers(edt_p, 1*1024*1024, 4, EDT_READ, NULL) ;

 edt_start_buffers(edt_p, 4) ; /* start 4 buffers */

for (;;)
{

char *bufptr ;

/* Wait for each buffer to complete, then process it.
 * The driver continues DMA concurrently with processing.
 */
bufptr = edt_wait_for_buffers(edt_p, 1) ;
process_data(bufptr) ;

edt_start_buffers(edt_p, 1) ;

}

}

Check compiler options in the EDT-provided make files.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 14

FIFO Flushing
First-in, first-out (FIFO) memory buffers are used to smooth data transmission between different types
of data sinks internal to PCI DV boards. For instance, the FIFO stores information processed by the
user interface Xilinx until the PCI Xilinx retrieves it across the PCI bus. The PCI bus normally sends
information in bursts, so the FIFO allows this same information to be sent smoothly.
When acquiring or sending data, you should flush the FIFO immediately before performing DMA. This
also resets the FIFO to an empty state. The following subroutines either flush the FIFO or set it to flush
automatically at the start of DMA. Complete descriptions are available on page 38.

void edt_flush_fifo (EDTDev *edt_p)
This routine flushes the global board FIFO. It is called just before the first call to
edt_start_buffers. It affects all channels on a multi-channel board. See
edt_flush_channel for per-channel FIFO flushing. Use caution when calling edt_flush_fifo
immediately before edt_read or edt_write, because there is a delay allocating kernel DMA resources
during thich the FIFO may overflow with data. See edt_set_firstflush below.

int edt_set_firstflush (EDTDev *edt_p, int flag)
This routine performs a global FIFO flush just before DMA starts in the driver when the flag is
nonzero. This routine is useful when using edt_read and edt_write. The default setting is OFF.

void edt_flush_channel (EDTDev *edt_p)
This routine flushes only the DMA channel associated with edt_p. It requires firmware support from
the user interface Xilinx and is not implemented on all firmware configurations.

void pcd_pio_flush_fifo (EDTDev *edt_p)
After calling pcd_pio_init(EdtDev *edt_p), this routine may be used to flush the global board FIFO by
using memory-mapped register access instead of using a system call to the driver. This method is
slightly faster.

Multi-Threaded Programming
EDT recognizes there are many ways to write multi-threaded programs that work, so the following
guidelines are provided to help with your initial programming efforts or as a means of troubleshooting
applications that use EDT boards.
The EDT driver is thread-safe with the following constraints:
1. All DMA operations must be performed in the same thread as edt_open and edt_close with respect

to each channel. Other threads may open the same channel concurrently with DMA, but should
perform no DMA-related operations. This is because kernel DMA resources are allocated on a per-
thread basis and must be allocated and released in the same thread.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 15

2. When exiting the program, one of the following two conditions must be met before the EDT driver
is used again:

• All threads spawned by a main program must be joined with the main program after they exit and
before the main program exits; or

• If the main program does not wait for the child threads to exit, then any program that is run
following the main program must wait for all the child threads to exit. This waiting period
depends on system load and availability of certain system resources, such as a hardware memory
management unit.

Failure to meet one of these conditions results in undefined program and system behavior and program
and system crashes can occur.

DMA Library Routines
The DMA library provides a set of consistent routines across many of the EDT products, with simple
yet powerful ring-buffered DMA capabilities. Table 1, DMA Library Routines, lists the general DMA
library routines, described in an order corresponding roughly to their general usefulness.

Routine Description

Startup/Shutdown

edt_open Opens the EDT Product for application access.
edt_open_channel Opens a specific channel on the EDT Product for application

access.
edt_close Terminates access to the EDT Product and releases resources.
edt_parse_unit Parses an EDT device name string.

Input/Output

edt_read Single, application-level buffer read from the EDT Product.
edt_write Single, application-level buffer write to the EDT Product.
edt_start_buffers Begins DMA transfer from or to specified number of buffers.
edt_stop_buffers Stops DMA transfer after the current buffer(s) complete(s).
edt_check_for_buffers Checks whether the specified number of buffers have completed

without blocking.
edt_done_count Returns absolute (cumulative) number of completed buffers.
edt_get_todo Gets the number of buffers that the driver has been told to acquire.
edt_wait_for_buffers Blocks until the specified number of buffers have completed.
edt_wait_for_next_buffer Waits for the next buffer that completes DMA.
edt_wait_buffers_timed Blocks until the specified number of buffers have completed;

returns a pointer to the time that the last buffer finished.
edt_next_writebuf Returns a pointer to the next buffer scheduled for output DMA.
edt_set_buffer Sets which buffer should be started next.
edt_set_buffer_size Used to change the size or direction of one of the ring buffers.
edt_last_buffer Waits for the last buffer that has been transferred.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 16

Routine Description
edt_last_buffer_timed Like edt_last_buffer but also returns the time at which the dma was

complete on this buffer.
edt_configure_ring_buffers Configures the ring buffers.
edt_buffer_addresses Returns an array of addresses referencing the ring buffers.
edt_disable_ring_buffers Stops DMA transfer, disables ring buffers and releases resources.
edt_ring_buffer_overrun Detects ring buffer overrun which may have corrupted data.
edt_reset_ring_buffers Stops DMA in progress and resets the ring buffers.
edt_configure_block_buffers Configures ring buffers using a contiguous block of memory.
edt_startdma_action Specifies when to perform the action at the start of a dma transfer

as set by edt_startdma_reg().
edt_enddma_action Specifies when to perform the action at the end of a dma transfer

as set by edt_ednddma_reg().
edt_startdma_reg Specifies the register and value to use at the start of dma, as set by

edt_startdma_action().
edt_abort_dma Cancels the current DMA, resets pointers to the current buffer.
edt_ablort_current_dma Cancels the current DMA, moves pointers to the next buffer.
edt_get_bytecount Returns the number of bytes transferred.
edt_timeouts Returns the cumulative number of timeouts since the device was

opened.
edt_get_timeout_count Returns the number of bytes transferred as of the last timeout.
edt_set_timeout_action Sets the driver behavior on a timeout.
edt_get_timeout_goodbits Returns the number of bits from the remote device since the last

timeout.
edt_do_timeout Causes the driver to perform the same actions as it would on a

timeout (causing partially filled fifos to be flushed and dma to be
aborted).

edt_get_rtimeout Gets the DMA read timeout period.
edt_set_rtimeout Sets how long to wait for a DMA read to complete, before returning.
edt_get_wtimeout Gets the DMA write timeout period.
edt_set_wtimeout Sets how long to wait for a DMA write to complete, before

returning.
edt_get_timestamp Gets the seconds and microseconds timestamp of dma completion

on the buffer specified by bufnum.
edt_get_reftime Gets the seconds and mircroseconds timestamp in the same

format as the buffer_timed function.
edt_ref_tmstamp Used for debugging. Able to see a history with setdebug -g with

an application defined event in the same timeline as driver events.
edt_get_burst_enable Returns a value indicating whether PCI Bus burst transfers are

enabled during DMA.
edt_set_burst_enable Turns on or off PCI Bus burst transfers during DMA.
edt_get_firstflush Returns the value set by edt_set_firstflush(). This is an obsolete

function.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 17

Routine Description
edt_set_firstflush Tells whether and when to flush FIFOs before DMA.
edt_flush_fifo Flushes the EDT Product FIFOs.
edt_get_goodbits Returns the number of bits from the remote device.

Control

edt_set_event_func Defines a function to call when an event occurs.
edt_remove_event_func Removes a previously set event function.
edt_reg_read Reads the contents of the specified EDT Product register.
edt_reg_write Writes a value to the specified EDT Product register.
edt_reg_and ANDs the value provided with the value of the specified EDT

Product register.
edt_reg_or ORs the value provided with the value of the specified EDT Product

register.
edt_get_foicount Returns the number of RCI modules connected to the EDT FOI

(fiber optic interface) board.
edt_set_foiunit Sets which RCI unit to address with subsequent serial and register

read/write functions.
edt_intfc_write A convenience routine, partly for backward compatability, to access

the XILINX interface registers.
edt_intfc_write_short A convenience routine, partly for backward compatability, to access

the XILINX interface registers.
edt_intfc_write_32 A convenience routine, partly for backward compatability, to access

the XILINX interface registers.

Utility

edt_msleep Sleep for the specified number of microseconds.
edt_alloc Allocate page-aligned memory in a system-independent way.
edt_free Free the memory allocated with edt_alloc.
edt_perror Prints a system error message in case of error.
edt_errno Returns an operating system-dependent error number.
edt_access Determines file access independent of operating system.
edt_get_bitpath Obtains pathname to the currently loaded interface bitfile from the

driver.

edt_open

Description
Opens the specified EDT Product and sets up the device handle.
Syntax
#include "edtinc.h"

EdtDev *edt_open(char *devname, int unit) ;

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 18

Arguments
devname a string with the name of the EDT Product board. For example, “edt”.
unit specifies the device unit number

Return
A handle of type (EdtDev *), or NULL if error. (The structure(EdtDev *) is defined in libedt.h.) If an
error occurs, check the errno global variable for the error number. The device name for the EDT
Product is “edt”. Once opened, the device handle may be used to perform I/O using edt_read(),
edt_write(), edt_configure_ring_buffers(), and other input-output library calls.

edt_open_channel
Description
Opens a specific DMA channel on the specified EDT Product, when multiple channels are supported
by the Xilinx firmware, and sets up the device handle. Use edt_close() to close the channel.
Syntax
#include "edtinc.h"

EdtDev *edt_open_channel(char *devname, int unit, int channel) ;

Arguments
devname a string with the name of the EDT Product board. For example, “edt”.
unit specifies the device unit number

channel specifies the DMA channel number counting from zero

Return
A handle of type (EdtDev *), or NULL if error. (The structure(EdtDev *) is defined in libedt.h.) If an
error occurs, check the errno global variable for the error number. The device name for the EDT
Product is “edt”. Once opened, the device handle may be used to perform I/O using edt_read(),
edt_write(), edt_configure_ring_buffers(), and other input-output library calls.

edt_close
Description
Shuts down all pending I/O operations, closes the device or channel and frees all driver resources
associated with the device handle.
Syntax
#include "edtinc.h"

int edt_close(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 19

edt_parse_unit
Description
Parses an EDT device name string. Fills in the name of the device, with the default_device if specified,
or a default determined by the package, and returns a unit number. Designed to facilitate a flexible
device/unit command line argument scheme for application programs. Most EDT example/utility
programs use this susubroutine to allow users to specify either a unit number alone or a device/unit
number concatenation.
For example, if you are using a PCI CD, then either xtest -u 0 or xtest -u pcd0 could both be used, since
xtest sends the argument to edt_parse_unit, and the subroutine parses the string to returns the device
and unit number separately.
Syntax
int edt_parse_unit(char *str, char *dev, char *default_dev)

Arguments
str device name string. Should be either a unit number (“0” - “8”) or device/unit

concantenation (“pcd0,” “pcd1,” etc.)

dev device string, filled in by the routine. For example, “pcd.”

default_dev device name to use if none is given in the str argument. If NULL, will be filled in
by the default device for the package in use. For example, if the code base is from a
PCI CD package, the default_dev will be set to “pcd.”

Return
Unit number or -1 on error. The first device is unit 0.
See Also
example/utility programs xtest.c, initcam.c, take.c

edt_read
Description
Performs a read on the EDT Product. For those on UNIX systems, the UNIX 2 GB file offset bug is
avoided during large amounts of input or output, that is, reading past 231 bytes does not fail. This call
is not multibuffering, and no transfer is active when it completes.
Syntax
#include "edtinc.h"

int edt_read(EdtDev *edt_p, void *buf, int size);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

buf address of buffer to read into

size size of read in bytes

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 20

Return
The return value from read, normally the number of bytes read; –1 is returned in case of error. Call
edt_perror() to get the system error message.

Note If using timeouts, call edt_timeouts after edt_read returns to see if the number of timeouts
has incremented. If it has incremented, call edt_get_timeout_count to get the number of
bytes transferred into the buffer. DMA does not automatically continue on to the next buffer,
so you need to call edt_start_buffers to move on to the next buffer in the ring.

edt_write
Description
Perform a write on the EDT Product. For those on UNIX systems, the UNIX 2 GB file offset bug is
avoided during large amounts of input or output; that is, writing past 231 does not fail. This call is not
multibuffering, and no transfer is active when it completes.
Syntax
#include "edtinc.h"

int edt_write(EdtDev *edt_p, void *buf, int size);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

buf address of buffer to write from

size size of write in bytes

Return
The return value from write; –1 is returned in case of error. Call edt_perror() to get the system error
message.

Note If using timeouts, call edt_timeouts after edt_write returns to see if the number of timeouts
has incremented. If it has incremented, call edt_get_timeout_count to get the number of
bytes transferred into the buffer. DMA does not automatically continue on to the next buffer,
so you need to call edt_start_buffers to move on to the next buffer in the ring.

edt_start_buffers
Description
Starts DMA to the specified number of buffers. If you supply a number greater than the number of
buffers set up, DMA continues looping through the buffers until the total count has been satisfied.
Syntax
#include "edtinc.h"

int edt_start_buffers(EdtDev *edt_p, int bufnum);

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 21

Arguments
edt_p device handle returned from edt_open or edt_open_channel

bufnum Number of buffers to release to the driver for transfer. An argument of 0
puts the driver in free running mode, and transfers run continuously
until edt_stop_buffers() is called.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_stop_buffers
Description
Stops DMA transfer after the current buffer has completed. Ring buffer mode remains active, and
transfers will be continued by calling edt_start_buffers().
Syntax
#include "edtinc.h"

int edt_stop_buffers(EdtDev *edt_p);

Arguments
edt_p device handle returned from edt_open or edt_open_channel

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_check_for_buffers
Description
Checks whether the specified number of buffers have completed without blocking.
Syntax
#include "edtinc.h"

void *edt_check_for_buffers(EdtDev *edt_p, int count);

Arguments
edt_p device handle returned from edt_open or edt_open_channel.

count number of buffers. Must be 1 or greater. Four is recommended.

Return
Returns the address of the ring buffer corresponding to count if it has completed DMA, or NULL if
count buffers are not yet complete.
Note If the ring buffer is in free-running mode and the application cannot process data as fast as it

is acquired, DMA will wrap around and overwrite the referenced buffer. The application must
ensure that the data in the buffer is processed or copied out in time to prevent overrun.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 22

edt_done_count
Description
Returns the cumulative count of completed buffer transfers in ring buffer mode.
Syntax
#include "edtinc.h"

int edt_done_count(EdtDev *edt_p);

Arguments

edt_p device handle returned from edt_open or edt_open_channel.

Return
The number of completed buffer transfers. Completed buffers are numbered consecutively starting with
0 when edt_configure_ring_buffers() is invoked. The index of the ring buffer most recently completed
by the driver equals the number returned modulo the number of ring buffers. –1 is returned if ring
buffer mode is not configured. If an error occurs, call edt_perror() to get the system error message.

edt_get_todo
Description
Gets the number of buffers that the driver has been told to acquire. This allows an application to know
the state of the ring buffers within an interrupt, timeout, or when cleaning up on close. It also allows the
application to know how close it is getting behind the acquisition. It is not normally needed.
Syntax
uint_t edt_get_todo(EdtDev *edt_p);

Arguments

edt_p device handle returned from edt_open or edt_open_channel.

Example
int curdone;

int curtodo;

curdone=edt_done_count(pdv_p);

curtodo=edt_get_todo(pdv_p);

/* curtodo--curdone how close the dma is to catching with our
processing */

Return
Number of buffers started via edt_start_buffers.
See Also
edt_done_count(), edt_start_buffers(), edt_wait_for_buffers()

edt_wait_for_buffers

Description
Blocks until the specified number of buffers have completed.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 23

Syntax
#include "edtinc.h"

void *edt_wait_buffers(EdtDev *edt_p, int count);

Arguments

edt_p device handle returned from edt_open or edt_open_channel
count How many buffers to block for. Completed buffers are numbered relatively;

start each call with 1.

Return
Address of last completed buffer on success; NULL on error. If an error occurs, call edt_perror() to get
the system error message.

Note If using timeouts, call edt_timeouts after edt_wait_for_buffers returns to see if the number of
timeouts has incremented. If it has incremented, call edt_get_timeout_count to get the
number of bytes transferred into the buffer. DMA does not automatically continue on to the
next buffer, so you need to call edt_start_buffers to move on to the next buffer in the ring.

Note If the ring buffer is in free-running mode and the application cannot process data as fast as it
is acquired, DMA will wrap around and overwrite the referenced buffer. The application must
ensure that the data in the buffer is processed or copied out in time to prevent overrun.

edt_wait_for_next_buffer
Description
Waits for the next buffer that finishes DMA. Depending on how often this routine is called, buffers that
have already completed DMA might be skipped.
Syntax
#include "edtinc.h"

void *edt_wait_for_next_buffer(EdtDev *edt_p) ;

Arguments

edt_p device handle returned from edt_open or edt_open_channel.

Return
Returns a pointer to the buffer, or NULL on failure. If an error occurs, call edt_perror() to get the
system error message.

edt_wait_buffers_timed
Description
Blocks until the specified number of buffers have completed with a pointer to the time the last buffer
finished.
Syntax
#include "edtinc.h"

void *edt_wait_buffers_timed (EdtDev *edt_p, int count, uint *timep);

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 24

Arguments

edt_p device handle returned from edt_open or edt_open_channel
count buffer number for which to block. Completed buffers are numbered

cumulatively starting with 0 when the EDT Product is opened.
timep pointer to an array of two unsigned integers. The first integer is seconds, the

next integer is microseconds representing the system time at which the
buffer completed.

Return
Address of last completed buffer on success; NULL on error. If an error occurs, call edt_perror() to get
the system error message.
Note If the ring buffer is in free-running mode and the application cannot process data as fast as it

is acquired, DMA will wrap around and overwrite the referenced buffer . The application
must ensure that the data in the buffer is processed or copied out in time to prevent overrun.

edt_next_writebuf
Description
Returns a pointer to the next buffer scheduled for output DMA, in order to fill the buffer with data.
Syntax
#include "edtinc.h"

void *edt_next_writebuf(EdtDev *edt_p) ;

Arguments

edt_p device handle returned from edt_open or edt_open_channel.

Return
Returns a pointer to the buffer, or NULL on failure. If an error occurs, call edt_perror() to get the
system error message.

edt_set_buffer
Description
Sets which buffer should be started next. Usually done to recover after a timeout, interrupt, or error.
Arguments

edt_p device handle returned from edt_open or edt_open_channel.

Syntax
#include "edtinc.h"

void *edt_next_writebuf(EdtDev *edt_p) ;

Example
u_int curdone;

edt_stop_buffers(edt_p);

curdone=edt_done_count(edt_p);

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 25

edt_set_buffer(edt_p, 0);

Return
0 on success, -1 on failure.
See Also
edt_stop_buffers(), edt_done_count(), edt_get_todo()

edt_set_buffer_size
Description
Used to change the size or direction of one of the ring buffers. Almost never used. Mixing directions
requires detailed knowledge of the interface since pending preloaded DMA transfers need to be
coordinated with the interface fifo direction. For example, a dma write will complete when the data is
in the output fifo, but the dma read should not be started until the data is out to the external device.
Most applications requiring fast mixed reads/writes have worked out more cleanly using seperate,
simultaneous, read and write dma transfers using different dma channels.
Arguments

edt_p device handle returned from edt_open or edt_open_channel
which_buf index of ring buffer to change
size size to change it to
write_flag direction

Syntax
int edt_set_buffer_size(EdtDev *edt_p, unsigned int which_buf,
unsigned int size, unsigned int write_flag)

Example
u_int bufnum=3;

u_int bsize=1024;

u_int dirflag=EDT_WRITE;

int ret;

ret=edt_set_buffer_size(edt_p, bufnum, bsize, dirflag);

Return
0 on success, -1 on failure.
See Also
edt_open_channel(), redpcd8.c, rd16.c, rdssdio.c, wrssdio.c

edt_last_buffer
Description
Waits for the last buffer that has been transferred. This is useful if the application cannot keep up with
buffer transfer. If this routine is called for a second time before another buffer has been transferred, it
will block waiting for the next transfer to complete.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 26

Arguments

edt_p device struct returned from edt_open
nSkipped pointer to an integer which will be filled in with number of buffers skipped, if

any.

Syntax
unsigned char *edt_last_buffer(EdtDev *edt_p, int *nSkipped)

Example
int skipped_bufs;

u_char *buf;

buf=edt_last_buffer(edt_p, &skipped_bufs);

Return
Address of the image.
See Also
edt_wait_for_buffers, edt_last_buffer_timed

edt_last_buffer_timed
Description
Like edt_last_buffer but also returns the time at which the DMA was complete on this buffer. “timep”
should point to an array of unsigned integers which will be filled in with the seconds and microseconds
of the time the buffer was finished being transferred.
Arguments

edt_p device struct returned from edt_open
timep pointer to an unsigned integer array

Syntax
unsigned char *edt_last_buffer_timed(EdtDev *edt_p, u_int *timep)

Example
u_int timestamp [2];

u_char *buf;

buf=edt_last_buffer_timed(edt_p, timestamp);

Return
Address of the image.
See Also
edt_wait_for_buffers(), edt_last_buffer(), edt_wait_buffers_timed

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 27

edt_configure_ring_buffers
Description
Configures the EDT device ring buffers. Any previous configuration is replaced, and previously
allocated buffers are released. Buffers can be allocated and maintained within the EDT device library
or within the user application itself.
Syntax
#include "edtinc.h"

int edt_configure_ring_buffers(EdtDev *edt_p, int bufsize, int nbufs,
 int data_output, void *bufarray[]);

Arguments

edt_p device handle returned from edt_open or edt_open_channel
bufsize size of each buffer. For optimal efficiency, allocate a value approximating

throughput divided by 20: that is, if transfer occurs at 20 MB per second,
allocate 1 MB per buffer. Buffers significantly larger or smaller can overuse
memory or lock the system up in processing interrupts at this speed.

nbufs number of buffers. Must be 1 or greater. Four is recommended for most
applications.

data_direction Indicates whether this connection is to be used for input or output. Only one
direction is possible per device or subdevice at any given time:
EDT_READ = 0
EDT_WRITE = 1

bufarray If NULL, the library will allocate a set of page-aligned ring buffers. If not
NULL, this argument is an array of pointers to application-allocated buffers;
these buffers must match the size and number of buffers specified in this call
and will be used as the ring buffers.

Return
0 on success; –1 on error. If all buffers cannot be allocated, none are allocated and an error is returned.
Call edt_perror() to get the system error message.

edt_buffer_addresses
Description
Returns an array containing the addresses of the ring buffers.
Syntax
#include "edtinc.h"

void **edt_buffer_addresses(EdtDev *edt_p);

Arguments

edt_p device handle returned from edt_open or edt_open_channel.

Return
An array of pointers to the ring buffers allocated by the driver or the library. The array is indexed from
zero to n-1 where n is the number of ring buffers set in edt_configure_ring_buffers().

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 28

edt_disable_ring_buffers
Description
Disables the EDT device ring buffers. Pending DMA is cancelled and all buffers are released.
Syntax
#include "edtinc.h"

int edt_disable_ring_buffers(EdtDev *edt_p);

Arguments

edt_p device handle returned from edt_open or edt_open_channel

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_ring_buffer_overrun
Description
Returns true (1) when DMA has wrapped around the ring buffer and overwritten the buffer which the
application is about to access. Returns false (0) otherwise.
Syntax
#include "edtinc.h"

int edt_ring_buffer_overrun(EdtDev *edt_p);

Arguments

edt_p device handle returned from edt_open or edt_open_channel.

Return
1 (true) when overrun has occurred, corrupting the current buffer, 0 (false) otherwise.
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_reset_ring_buffers
Description
Stops any DMA currently in progress, then resets the ring buffer to start the next DMA at bufnum.
Syntax
#include "edtinc.h"

int edt_reset_ring_buffers(EdtDev *edt_p, int bufnum) ;

Arguments

edt_p device handle returned from edt_open or edt_open_channel.
bufnum The index of the ring buffer at which to start the next DMA. A number larger

than the number of buffers set up sets the current done count to the number
suppliedmodulo the number of buffers.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 29

edt_configure_block_buffers
Description
Similar to edt_configure_ring_buffers, except that it allocates the ring buffers as a single large block,
setting the ring buffer addresses from within that block. This allows reading or writing buffers from/to
a file in single chunks larger than the buffer size, which is sometimes considerable more efficient.
Buffer sizes are rounded up by PAGE_SIZE so that DMA occurs on a page boundary.
Syntax
int edt_configure_block_buffers(EdtDev *edt_p, int bufsize, int
numbufs, int write_flag, int header_size, int header_before)

Arguments

edt_p device struct returned from edt_open
bufsize size of the individual buffers
numbufs number of buffers to create
write_flag 1, if these buffers are set up to go out; 0 otherwise
header_size if non-zero, additional memory (header_size bytes) will be allocated for each

buffer for Header data. The loocation of this header space is determined by
the argument header_before.

header_before if non-zero, the header space defined by header_size is placed before the
DMA buffer; otherwise, it comes after the DMA buffer. The value returned by
edt_wait_for_buffers is always the DMA buffer.

Return
0 on success, -1 on failure.
See Also
edt_configure_ring_buffers

edt_startdma_action
Description
Specifies when to perform the action at the start of a dma transfer as specified by edt_startdma_reg(). A
common use of this is to write to a register which signals an external device that dma has started, to
trigger the device to start sending. The default is no dma action. The PDV library uses this function to
send a trigger to a camera a the start of dma. This function allows the register write to occur in a critical
section with the start of dma and at the same time.
Syntax
void edt_startdma_action(EdtDev *edt_p, uint_t val);

Arguments

edt_p device struct returned from edt_open
val One of EDT_ACT_NEVER, EDT_ACT_ONCE, or EDT_ACT_ALWAYS

Example
edt_startdma_action(edt_p, EDT_ACT_ALWAYS);

edt_startdma_reg(edt_p, PDV_CMD, PDV_ENABLE_GRAB);

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 30

Return
void
See Also
edt_startdma_reg(), edt_reg_write(), edt_reg_read()

edt_enddma_action
Description
Specifies when to perform the action at the end of a dma transfer as specified by edt_enddma_reg(). A
common use of this is to write to a register which signals an external device that dma is complete, or to
change the state of a signal which will be changed at the start of dma, so the external device can look
for an edge. The default is no end of dma action. Most applications can set the output signal, if needed,
from the application with edt_reg_write(). This routine is only needed if the action must happen within
microseconds of the end of dma.
Syntax
void edt_enddma_action(EdtDev *edt_p, uint_t val);

Arguments

edt_p device struct returned from edt_open
val One of EDT_ACT_NEVER, EDT_ACT_ONCE, or EDT_ACT_ALWAYS

Example
u_int fnct_value=0x1;

edt_enddma_action(edt_p, EDT_ACT_ALWAYS);

edt_enddma_reg(edt_p, PCD_FUNCT, fnct_value);

Return
void
See Also
edt_startdma_action(), edt_startdma_reg(), edt_reg_write(), edt_reg_read()

edt_startdma_reg
Description
Sets the register and value to use at the start of dma, as set by edt_startdma_action().
Syntax
void edt_startdma_reg(EdtDev *edt_p, uint_t desc, uint_t val);

Arguments

edt_p device struct returned from edt_open
desc register description of which register to use as in edtreg.h
val value to write

Example
edt_startdma_action(edt_p, EDT_ACT_ALWAYS);

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 31

edt_startdma_reg(edt_p, PDV_CMD, PDV_ENABLE_GRAB);

Return
void
See Also
edt_startdma_action()

edt_abort_dma
Description
Stops any transfers currently in progress, resets the ring buffer pointers to restart on the current buffer.
Syntax
#include "edtinc.h"

int edt_abort_dma(EdtDev *edt_p);

Arguments

edt_p device handle returned from edt_open or edt_open_channel.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_abort_current_dma
Description
Stops the current transfers, resets the ring buffer pointers to the next buffer.
Syntax
#include "edtinc.h"

int edt_abort_current_dma(EdtDev *edt_p);

Arguments

edt_p device handle returned from edt_open or edt_open_channel.

Return
0 on success, -1 on failure

edt_get_bytecount
Description
Returns the number of bytes transferred since the last call of edt_open, accurate to the burst size, if
burst is enabled.
Syntax
#include "edtinc.h"

int edt_get_bytecount(EdtDev *edt_p);

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 32

Arguments

edt_p device handle returned from edt_open or edt_open_channel

Return
The number of bytes transferred, as described above.

edt_timeouts
Description
Returns the number of read and write timeouts that have occurred since the last call of edt_open.
Syntax
#include "edtinc.h"

int edt_timeouts(EdtDev *edt_p);

Arguments

edt_p device handle returned from edt_open or edt_open_channel

Return
The number of read and write timeouts that have occurred since the last call of edt_open.

edt_get_timeout_count
Description
Returns the number of bytes transferred at last timeout.
Syntax
#include "edtinc.h"

int edt_get_timeout_count(EdtDev *edt_p);

Arguments

edt_p device handle returned from edt_open or edt_open_channel

Return
The number of bytes transferred at last timeout.

edt_set_timeout_action
Description
Sets the driver behavior on a timeout.
Syntax
#include "edtinc.h"

void edt_set_timeout_action(EdtDev *edt_p, int action);

Arguments

edt_p device handle returned from edt_open or edt_open_channel
action integer configures the any action taken on a timeout. Definitions:

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 33

EDT_TIMEOUT_NULL no extra action taken

EDT_TIMEOUT_BIT_STROBE flush any valid bits left in input circuits of
SSDIO.

Return
No return value.

edt_get_timeout_goodbits
Description
Returns the number of good bits in the last long word of a read buffer after the last timeout. This
routine is called after a timeout, if the timeout action is set to EDT_TIMEOUT_BIT_STROBE. (See
edt_set_timeout_action on page 32.)
Syntax
#include "edtinc.h"

int edt_get_timeout_goodbits(EdtDev *edt_p);

Arguments

edt_p device handle returned from edt_open or edt_open_channel

Return
Number 0–31 represents the number of good bits in the last 32-bit word of the read buffer associated
with the last timeout.

edt_do_timeout
Description
Causes the driver to perform the same actions as it would on a timeout (causing partially filled fifos to
be flushed and dma to be aborted). Used when the application has knowledge that no more data will be
sent/accepted. Used when a common timeout cannot be known, such as when acquiring data from a
telescope ccd array where the amount of data sent depends on unknown future celestial events. Also
used by the library when the operating system can not otherwise wait for an interrupt and timeout at the
same time.
Syntax
int edt_do_timeout(EdtDev *edt_p)

Arguments

edt_p device struct returned from edt_open

Example
edt_do_timeout(edt_p);

Return
0 on success, -1 on failure
See Also
ring buffer discussion

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 34

edt_get_rtimeout
Description
Gets the current read timeout value: the number of milliseconds to wait for DMA reads to complete
before returning.
Syntax
#include "edtinc.h"

int edt_get_rtimeout(EdtDev *edt_p);

Arguments

edt_p device handle returned from edt_open or edt_open_channel

Return
The number of milliseconds in the current read timeout period.

edt_set_rtimeout
Description
Sets the number of milliseconds for data read calls, such as edt_read(), to wait for DMA to complete
before returning. A value of 0 causes the I/O operation to wait forever—that is, to block on a read.
Edt_set_rtimeout affects edt_wait_for_buffers (see page XX) and edt_read (see page XX).
Syntax
#include "edtinc.h"

int edt_set_rtimeout(EdtDev *edt_p, int value);

Arguments

edt_p device handle returned from edt_open or edt_open_channel
value The number of milliseconds in the timeout period.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_get_wtimeout
Description
Gets the current write timeout value: the number of milliseconds to wait for DMA writes to complete
before returning.
Syntax
#include "edtinc.h"

int edt_get_wtimeout(EdtDev *edt_p);

Arguments

edt_p device handle returned from edt_open or edt_open_channel

Return
The number of milliseconds in the current write timeout period.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 35

edt_set_wtimeout
Description
Sets the number of milliseconds for data write calls, such as edt_write(), to wait for DMA to complete
before returning. A value of 0 causes the I/O operation to wait forever—that is, to block on a write.
Edt_set_wtimeout affects edt_wait_for_buffers (see page XX) and edt_write (see page XX).
Syntax
#include "edtinc.h"

int edt_set_wtimeout(EdtDev *edt_p, int value);

Arguments

edt_p device handle returned from edt_open or edt_open_channel
value The number of milliseconds in the timeout period.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_get_timestamp
Description
Gets the seconds and microseconds timestamp of when dma was completed on the buffer specified by
bufnum. “bufnum” is moded by the number of buffers in the ring buffer, so it can either be an index, or
the number of buffers completed.
Syntax
int edt_get_timestamp(EdtDev *edt_p, u_int *timep, u_int bufnum)

Arguments

edt_p device struct returned from edt_open
timep pointer to an unsigned integer array
bufnum buffer index, or number of buffers completed

Example
int timestamp[2];

u_int bufnum=edt_done_count(edt_p);

edt_get_timestamp(edt_p, timestamp, bufnum);

Return
0 on success, -1 on failure. Fills in timestamp pointed to by timep.
See Also
edt_timestamp(), edt_done_count(), edt_wait_buffers_timed

edt_get_reftime
Description
Gets the seconds and microseconds timestamp in the same format as the buffer_timed functions. Used
for debugging and coordinating dma completion time with other events.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 36

Syntax
int edt_get_reftime(EdtDev *edt_p, u_int *timep)

Arguments

edt_p device struct returned from edt_open
timep pointer to an unsigned integer array
bufnum buffer index, or number of buffers completed

Example
int timestamp[2];

edt_get_regtime(edt_p, timestamp);

Return
0 on success, -1 on failure. Fills in timestamp pointed to by timep.
See Also
edt_timestamp(), edt_done_count(), edt_wait_buffers_timed

edt_ref_tmstamp
Description
Used for debugging and viewing a history with setdebug -g with an application-defined event in the
same timeline as driver events.
Syntax
int edt_ref_tmstamp(EdtDev *edt_p, u_int val)

Arguments

edt_p device struct returned from edt_open
val an arbitrary value meaningful to the application

Example
#define BEFORE_WAIT 0x11212aaaa

#define AFTER_WAIT 0x3344bbbb

u_char *buf;

edt_ref_tmstamp(edt_p, BEFORE_WAIT);

buf=edt_wait_for_buffer(edt_p);

edt_reg_tmstamp(edt_p, AFTER_WAIT);

/* now look at output of setdebug -g */

Return
0 on success, -1 on failure.
See Also
documentation on setdebug

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 37

edt_get_burst_enable
Description
Returns the value of the burst enable flag, determining whether the DMA master transfers as many
words as possible at once, or transfers them one at a time as soon as the data is acquired. Burst transfers
are enabled by default to optimize use of the bus. For more information, see edt_set_burst_enable on
page 37.
Syntax
#include "edtinc.h"

int edt_get_burst_enable(EdtDev *edt_p);

Arguments

edt_p device handle returned from edt_open or edt_open_channel

Return
A value of 1 if burst transfers are enabled; 0 otherwise.

edt_set_burst_enable
Description
Sets the burst enable flag, determining whether the DMA master transfers as many words as possible at
once, or transfers them one at a time as soon as the data is acquired. Burst transfers are enabled by
default to optimize use of the bus; however, you may wish to disable them if data latency is an issue, or
for diagnosing DMA problems.
Syntax
#include "edtinc.h"

void edt_set_burst_enable(EdtDev *edt_p, int onoff);

Arguments

edt_p device handle returned from edt_open or edt_open_channel
onoff A value of 1 turns the flag on (the default); 0 turns it off.

Return
No return value.

edt_get_firstflush
Description
Returns the value set by edt_set_firstflush(). This is an obsolete function that was only used as a kludge
to detect EDT_ACT_KBS (also obsolete).
Syntax
int edt_get_firstflush(EdtDev *edt_p)

Arguments

edt_p device struct returned from edt_open.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 38

Example
int application_should_already_know_this;

application_should_already_know_this=edt_get_firstflush(edt_p);

Return
Yes
See Also
edt_set_firstflush

edt_set_firstflush
Description
Tells whether and when to flush the FIFOs before DMA transfer. By default, the FIFOs are not flushed.
However, certain applications may require flushing before a given DMA transfer, or before each
transfer.
Syntax
#include "edtinc.h"

int *edt_set_firstflush(EdtDev *edt_p, int flag) ;

Arguments

edt_p device handle returned from edt_open or edt_open_channel.
flag Tells whether and when to flush the FIFOs. Valid values are:

EDT_ACT_NEVER don’t flush before DMA transfer (default)
EDT_ACT_ONCE flush before the start of the next DMA transfer

EDT_ACT_ALWAYS flush before the start of every DMA transfer

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_flush_fifo
Description
Flushes the board’s input and output FIFOs, to allow new data transfers to start from a known state.
Syntax
#include "edtinc.h"

void edt_flush_fifo(EdtDev *edt_p);

Arguments

edt_p device handle returned from edt_open or edt_open_channel

Return
No return value.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 39

edt_get_goodbits
Description
Returns the current number of good bits in the last long word of a read buffer (0 through 31).
Syntax
#include "edtinc.h"

int edt_get_goodbits(EdtDev *edt_p);

Arguments

edt_p device handle returned from edt_open or edt_open_channel

Return
Number 0–31 represents the number of good bits in the 32-bit word of the current read buffer.

edt_set_event_func
Description
Defines a function to call when an event occurs. Use this routine to send an application-specific
function when required; for example, when DMA completes, allowing the application to continue
executing until the event of interest occurs.
If you wish to receive notification of one event only, and then disable further event notification, send a
final argument of 0 (see the continue parameter described below). This disables event notification at the
time of the callback to your function.
Syntax
#include "edtinc.h"

int edt_set_event_func(EdtDev *edt_p, int event, void (*func)(void
*),
 void *data, int continue);

Arguments

edt_p device handle returned from edt_open or edt_open_channel.
The event that causes the function to be called. Valid events are:
Event Description Board
EDT_PDV_EVENT_ACQUIRE Image has been acquired;

shutter has closed; subject
can be moved if necessary;
DMA will now restart

PCI DV,
PCI DVK,
PCI FOI

EDT_PDV_EVENT_FVAL Frame Valid line is set PCI DV,
PCI DVK

EDT_EVENT_P16D_DINT Device interrupt occurred PCI 16D
EDT_EVENT_P11W_ATTN Attention interrupt occurred PCI 11W
EDT_EVENT_P11W_CNT Count interrupt occurred PCI 11W

event

EDT_EVENT_PCD_STAT1 Interrupt occurred on Status 1
line

PCI CD

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 40

EDT_EVENT_PCD_STAT2 Interrupt occurred on Status 2
line

PCI CD

EDT_EVENT_PCD_STAT3 Interrupt occurred on Status 3
line

PCI CD

EDT_EVENT_PCD_STAT4 Interrupt occurred on Status 4
line

PCI CD

EDT_EVENT_ENDDMA DMA has completed ALL
func The function you’ve defined to call when the event occurs.
data Pointer to data block (if any) to send to the function as an argument; usually

edt_p.
continue Flag to enable or disable continued event notification. A value of 0 causes

an implied edt_remove_event_func as the event is triggered.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_remove_event_func
Description
Removes an event function previously set with edt_set_event_func.
Note This routine is implemented on PCI Bus platforms only.

Syntax
#include "edtinc.h"

int edt_remove_event_func(EdtDev *edt_p, int event);

Arguments

edt_p device handle returned from edt_open or edt_open_channel.
event The event that causes the function to be called. Valid events are as listed in

edt_set_event_func on page 39.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_reg_read
Description
Reads the specified register and returns its value. Use this routine instead of using ioctls.
Syntax
#include "edtinc.h"

uint edt_reg_read(EdtDev *edt_p, uint address);

Arguments

edt_p device handle returned from edt_open or edt_open_channel
address The name of the register to read. Use the names provided in the register

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 41

descriptions in the section entitled “Hardware.”

Return
The value of the register.

edt_reg_write
Note Use this routine with care; it writes directly to the hardware. An incorrect value can crash

your system, possibly causing loss of data.

Description
Write the specified value to the specified register. Use this routine instead of using ioctls.
Syntax
#include "edtinc.h"

void edt_reg_write(EdtDev *edt_p, uint address, uint value);

Arguments

edt_p device handle returned from edt_open or edt_open_channel
address The name of the register to write. Use the names provided in the register

descriptions in the section entitled “Hardware.”
value The desired value to write in the register.

Return
No return value.

edt_reg_and
Note Use this routine with care; it writes directly to the hardware. An incorrect value can crash

your system, possibly causing loss of data.

Description
Performs a bitwise logical AND of the value of the specified register and the value provided in the
argument; the result becomes the new value of the register. Use this routine instead of using ioctls.
Syntax
#include "edtinc.h"

uint edt_reg_and(EdtDev *edt_p, uint address, uint mask);

Arguments

edt_p device handle returned from edt_open or edt_open_channel
address The name of the register to modify. Use the names provided in the register

descriptions in the section entitled “Hardware.”
mask The value to AND with the register.

Return
The new value of the register.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 42

edt_reg_or
Note Use this routine with care; it writes directly to the hardware. An incorrect value can crash

your system, possibly causing loss of data.

Description
Performs a bitwise logical OR of the value of the specified register and the value provided in the
argument; the result becomes the new value of the register. Use this routine instead of using ioctls.
Syntax
#include "edtinc.h"

uint edt_reg_or(EdtDev *edt_p, uint address, uint mask);

Arguments

edt_p device handle returned from edt_open or edt_open_channel
address The name of the register to modify. Use the names provided in the register

descriptions in the section entitled “Hardware.”
mask The value to OR with the register.

Return
The new value of the register.

edt_get_foicount
Description
Returns the number of RCI modules connected to the EDT FOI (fiber optic interface) board.
Syntax
int edt_get_foicount(EdtDev *edt_p)

Arguments

edt_p device struct returned from edt_open

Example
int num-rcis;

num_rcia=edt_get_foicount(edt_p);

Return
Integer
See Also
edt_set_foiunit(), edt_get_foiunit(), edt_set_foicount()

edt_set_foicount
Description
Sets which RCI unit to address with subsequent serial and register read/write functions. Used with the
PDV FOI.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 43

Syntax
int edt_set_foicount(EdtDev *edt_p, int unit)

Arguments

edt_p device struct returned from edt_open
unit unit number of RCI unit

Example
int nextunit;

nextunit=3;

edt_set_foiunit(edt_p, nextunit);

Return
0 on success, -1 on failure
See Also
pdv_serial_write(), edt_reg_write(), edt_reg_read(), pdv_serial_read()

edt_intfc_write
Description
A convenience routine, partly for backward compatability, to access the XILINX interface registers.
The register descriptors used by edt_reg_write() can also be used, since edt_intfc_write masks off the
offset.
Syntax
void edt_intfc_write(EdtDev *edt_p, uint_t offset, uchar_t val)

Arguments

edt_p device struct returned from edt_open
offset integer offset into XILINX interface, or register descriptor
val unsigned character value to set

Example
u_char fnct1=1;

edt_intfc_write(edt_p, PCD_FUNCT, fnct1);

Return
void
See Also
edt_intfc_read(), edt_reg_write(), edt_intfc_write_short()

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 44

edt_intfc_read
Description
A convenience routine, partly for backward compatability, to access the XILINX interface registers.
The register descriptors used be edt_reg_write() can also be used, since edt_intfc_read masks off the
offset.
Syntax
u_char

edt_intfc_read(EdtDev *edt_p, uint_t offset)

Arguments

edt_p device struct returned from edt_open
offset integer offset into XILINX interface, or register descriptor
val unsigned character value to set

Example
u_char rfnct=edt_intfc_read(edt_p, PCD_FUNCT);

Return
void
See Also
edt_intfc_write(), edt_reg_read(), edt_intfc_read_short()

edt_intfc_write_short
Description
A convenience routine, partly for backward compatability, to access the XILINX interface registers.
The register descriptors used be edt_reg_write() can also be used, since edt_intfc_write_short masks off
the offset.
Syntax
void edt_intfc_write_short(EdtDev *edt_p, uint_t offset, u_short val)

Arguments

edt_p device struct returned from edt_open
offset integer offset into XILINX interface, or register descriptor
val unsigned character value to set

Example
u_short width=1024;

edt_intfc_write_short(edt_p, CAM_WIDTH, width);

Return
void
See Also
edt_intfc_write(), edt_reg_write()

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 45

edt_intfc_read_short
Description
A convenience routine, partly for backward compatability, to access the XILINX interface registers.
The register descriptors used be edt_reg_write() can also be used, since edt_intfc_read_short masks off
the offset.
Syntax
u_short

edt_intfc_read_short(EdtDev *edt_p, unit_t offset)

Arguments

edt_p device struct returned from edt_open
offset integer offset into XILINX interface, or register descriptor
val unsigned character value to set

Example
u_short r_camw=edt_intfc_read_short(edt_p, CAM_WIDTH);

Return
void
See Also
edt_intfc_read(), edt_reg_read()

edt_intfc_write_32
Description
A convenience routine, partly for backward compatability, to access the XILINX interface registers.
The register descriptors used be edt_reg_write() can also be used, since edt_intfc_write_32 masks off
the offset.
Syntax
void edt_intfc_write_32(EdtDev *edt_p, uint_t offset, unit_t val)

Arguments

edt_p device struct returned from edt_open
offset integer offset into XILINX interface, or register descriptor
val unsigned character value to set

Example
u_int value=0x12345678;

edt_intfc_write_32(edt_p, MAGIC_OFF1, value);

Return
void
See Also
edt_intfc_read_32(), edt_reg_write()

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 46

edt_intfc_read_32
Description
A convenience routine, partly for backward compatability, to access the XILINX interface registers.
The register descriptors used be edt_reg_write() can also be used, since edt_intfc_read_32 masks off
the offset.
Syntax
uint_t

edt_intfc_read_32(EdtDev *edt_p, uint_t offset)

Arguments

edt_p device struct returned from edt_open
offset integer offset into XILINX interface, or register descriptor
val unsigned character value to set

Example
u_int r_actkbs=edt_intfc_read_32(edt_p, EDT_ACT_KBS);

Return
void

edt_msleep
Description
Causes the process to sleep for the specified number of microseconds.
Syntax
#include "edtinc.h"

int edt_msleep(u_int usecs) ;

Arguments

usecs The number of microseconds for the process to sleep.

Return
0 on success; –1 on error. If an error occurs, call edt_perror() to get the system error message.

edt_alloc
Description
Convenience routine to allocate memory in a system-independent way. The buffer returned is page
aligned. Uses VirtualAlloc on Windows NT systems, valloc on UNIX-based systems.
Syntax
#include "edtinc.h"

int
edt_alloc(int nbytes)

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 47

Arguments

nbytes number of bytes of memory to allocate.

Example
unsigned char *buf = edt_alloc(1024);

Returns
The address of the allocated memory, or NULL on error. If NULL, use edt_perror on page 47 to print
the error.

edt_free
Description
Convenience routine to free the memory allocated with pdv_alloc (above).
Syntax
#include "edtinc.h"

int
edt_free(unsigned char *buf)

Arguments

buf Address of memory buffer to free.

Example
edt_free(buf);

Returns
0 if successful, –1 if unsuccessful.

edt_perror
Description
Formats and prints a system error.
Syntax
#include "edtinc.h"

void
edt_perror(char *errstr)

Arguments

errstr Error string to include in the printed error output.

Return
No return value. See edt_errno below for an example.

edt_errno
Description
Returns an operating system-dependent error number.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 48

Syntax
#include "edtinc.h"

int
edt_errno(void)

Arguments
None.
Return
32-bit integer representing the operating system-dependent error number generated by an error.
Example
if ((edt_p = edt_open("p11w",0))==NULL
{
 int error_num;

 edt_perror("edt_open");
 error_num = edt_errno(edt_p);
}

edt_access
Description
Determines file access, independent of operating system. This a convenience routine that maps to
acccess() on Unix/Linus systems and _access() on Windows systems.
Syntax
int edt_access(char *fname, int perm)

Arguments

edt_p device struct returned from edt_open
fname path name of the file to check access permissions
perm permission flag(s) to test for. See access() (Unix/Linux) or _access()

(Windows) for valid values.

Example
if(edt_access(“file.ras”, F_OK))

printf(“Warning: overwriting file %s\n”);

Return
0 on success, -1 on failure

edt_get_bitpath
Description
Obtains pathname to the currently loaded interface bitfile from the driver. The program “bitload” sets
this string in the driver when an interface bitfile is successfully loaded.
Syntax
#include “edtinc.h”

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 49

int edt_get_bitpath(EdtDev *edt_p, char *bitpath, int size);

Arguments

edt_p device handle returned from edt_open or edt_open_channel
bitpath address of a character buffer of at least 128 bytes
size number of bytes in the above character buffer

Return
0 on success, -1 on failure

EDT Message Handler Library
The edt error library provides generalized error and message handling for the edt and pdv libraries. The
primary purpose of the routines is to provide a method for application programs to intercept and handle
edtlib and pdvlib error, warning debug messages, but can also be used for application messages.
By default, output goes to the console (stdout), but user defined functions can be substituted. For
example, a function that pops up a window and displays the text in that window. Different message
levels can be set for different output, and multiple message handles can even exist within an
application, with different message handlers associated with them.

Message Definitions

User application messages
EDTAPP_MSG_FATAL
EDTAPP_MSG_WARNING
EDTAPP_MSG_INFO_1
EDTAPP_MSG_INFO_2

Edtlib messages
EDTLIB_MSG_FATAL
EDTLIB_MSG_WARNING
EDTLIB_MSG_INFO_1
EDTLIB_MSG_INFO_2

Pdvlib messages
PDVLIB_MSG_FATAL
PDVLIB_MSG_WARNING
PDVLIB_MSG_INFO_1
PDVLIB_MSG_INFO_2

Library and application messages
EDT_MSG_FATAL (defined as EDTAPP_MSG_FATAL | EDTLIB_MSG_FATAL |
PDVLIB_MSG_FATAL)
EDT_MSG_WARNING (defined as EDTAPP_MSG_WARNING |
EDTLIB_MSG_WARNING | PDVLIB_MSG_WARNING)

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 50

EDT_MSG_INFO_1 (defined as EDTAPP_MSG_INFO_1 | EDTLIB_MSG_INFO_2 |
PDVLIB_MSG_INFO_2)
EDT_MSG_INFO_2 (defined as EDTAPP_MSG_INFO_2 | EDTLIB_MSG_INFO_2 |
PDVLIB_MSG_INFO_2)

Message levels are defined by flag bits, and each bit can be set or cleared individually. So for
example if you want a message handler to be called for fatal and warning application messages
only, you would specify EDTAPP_MSG_FATAL | EDTAPP_MSG_WARNING.
As you can see, the edt and pci dv libraries have their own message flags. These can be turned
on and off from within an application, and also by setting the environment variables
EDTDEBUG and PDVDEBUG, respectively, to values greater than zero.
Application programs would normally specify combinations of either the EDTAPP_MSG_ or
EDT_MSG flags for their messages.

Files

edt_error.h: header file (automatically included if edtinc.h is included)
edt_error.c: message subroutines
The EdtMsgHandler structure is defined in edt_error.h. Application programmers should not access
structure elements directly; instead always go through the error subroutines.

edt_msg_init
Description
Initializes a message handle to defaults. The message file is initialized to stderr. The output subroutine
pointer is set to fprintf (console output). The message level is set to EDT_MSG_WARNING |
EDT_MSG_FATAL.
Syntax
void edt_msg_init(EdtMsgHandler *msg_p)

Arguments

msg_p pointer to message handler structure to initialize

Return
Void
Example
EdtMsgHandler msg_p;

edt_msg_init(&msg_p);

See Also
edt_msg_output

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 51

edt_msg
Description
Submits a message to the default message handler, which will conditionally (based on the flag bits)
send the message as an argument to the default message handler function. Uses the default message
handle, and is equivalent to calling edt_msg_output(edt_msg_default_handle(), ...). To submit a
message for handling from other than the default message handle, use edt_msg_output.
Syntax
int edt_msg(int level, char *format, ...)

Arguments

level an integer variable that contains flag bits indicating what 'level' message it is.
Flag bits are described in the overview.

format a string and arguments describing the format. Uses vsprintf to print
formatted text to a string, and sends the result to the handler subroutine.
Refer to the printf manual page for formatting flags and options.

Return
Void
Example
edt_msg(EDTAPP_MSG_WARNING, "file '%s' not found", fname);

edt_msg_output
Description
Submits a message using the msg_p message handle, which will conditionally (based on the flag bits)
send the message as an argument to the handle's message handler function. To submit a message for
handling by the default message handle, edt_msg.
Syntax
int edt_msg_output(EdtMsgHandler *msg_p, int level, char *format,
...)

Arguments

msg_p pointer to message handler, initiailzed by edt_msg_init
level an integer variable that contains flag bits indicating what 'level' message it is.

Flag bits are described in the overview.
format a string and arguments describing the format. Uses vsprintf to print

formatted text to a string, and sends the result to the handler subroutine.
Refer to the printf manual page for formatting flags and options.

Return
Void
Example
EdtMsgHandler msg_p;

edt_msg_init(&msg_p);

edt_msg_set_function(msg_p, (EdtMsgFunction *)my_error_popup);

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 52

edt_msg_set_level(msg_p, EDT_MSG_FATAL | EDT_MSG_WARNING);

if (edt_access(fname, 0) != 0)

 edt_msg_output(msg_p, EDTAPP_MSG_WARNING, "file '%s' not
found", fname);

edt_msg_close
Description
Closes and frees up memory associated with a message handle. Use only on message handles that have
been explicitly initialized by edt_msg_init. Do not try to close the default message handle.
Syntax
int edt_msg_close(EdtMsgHandler *msg_p)

Arguments

msg_p the message handle to close

Return
0 on success, -1 on failure

edt_msg_set_level
Description
Sets the "message level" flag bits that determine whether to call the message handler for a given
message. The flags set by this function are ANDed with the flags set in each edt_msg call, to determine
whether the call goes to the message function and actually results in any output.
Syntax
void edt_msg_set_level(EdtMsgHandler *msg_p, int newlevel)

Arguments

msg_p the message handle

Example
edt_msg_set_level(edt_msg_default_level(),
EDT_MSG_FATAL|EDT_MSG_WARNING);

Return
Void

edt_msg_set_function
Description
Sets the function to call when a message event occurs. The default message function is printf (outputs
to the console); edt_msg_set_function allows programmers to substitute any type of message handler
(pop-up callback, file write, etc).
Syntax
void edt_msg_set_function(EdtErrorFunction f)

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 53

Arguments

msg_p the message handle

Example
See edt_msg

Return
Void
See Also
edt_msg, edt_msg_set_level

edt_msg_set_msg_file
Description
Sets the output file pointer for the message handler. Expects a file handle for a file that is already open.
Syntax
void edt_msg_set_msg_file(EdtMsgHandler *msg_p, FILE *fp)

Arguments

msg_p the message handle
p pointer to a file handle that is already open, to which the messages should

be output

Example
EdtMsgHandler msg_p;

 FILE *fp = fopen("messages.out", "w");

 edt_msg_init(&msg_p);

 edt_msg_set_file(&msg_p, fp);

Return
Void

edt_msg_perror
Description
Conditionally outputs a system perror using the default message pointer.
Syntax
int edt_msg_perror(int level, char *msg)

Arguments

level message level, described in the overview
msg message to concatenate to the system error

Example
if ((fp = fopen ("file.txt", "r")) == NULL)

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 54

edt_sysperror(EDT_FATAL, "file.txt");

Return
0 on success, -1 on failure
See Also
edt_perror

PCI CD and PCI CDa

PCI CD Output Clock Generation
The output clock is generated from a phase-locked loop (PLL) oscillator, a reference crystal, and
programmable dividers. Because each of these components has physical limits to its operation, it may
not be possible to get exactly the frequency desired. To get the expected results, you need to understand
how the clock generator operates. Figure 1 diagrams how the final value is generated.
Figure 1 Legend
Frequency values:

fxtal PCI CD-20 is 10 MHz, PCI CD-40 is 20 MHz, and PCI CD-60 is 30 MHz.

fref The PLL reference frequency must be between 200 KHz and 5.0 MHz.

fvco The VCO output frequency must be between 50 MHz and 250 MHz.

ffback The VCO varies fvco until the feedback frequency matches the PLL reference frequency.

fxilinx The input frequency into the high speed odd divider must be less than 100 MHz.

flow The divide by n counter input frequency must be less than 30 MHz. If L and X are both set to 1,
then frequencies to 100 MHz may be passed to the divide by 2.

fout This final divide by 2 assures a 50% output clock duty cycle.

reference divider crystal fxtal fref
Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 55

Figure 1. Output Clock Generation Block Diagram

The formula for calculating fout is:

 fout = (N * V * fxtal)/(m * R * H * L * X * 2)

feedback
prescale
V=1 or 8

feedback divider
N=3 to 127

M=3 to 127 oscillator

VCO
VCO output

divider

R=1, 2, 4, or 8

high-speed
odd divider

H=1, 3, 5, or 7

first divide
by n

L=1 to 64 X=1 to 256

divide by 2
for clock
symmetry

second
divide by n

fvco

fxilinx

flow fout

ffback

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 56

For example, to achieve 15 MHz using a PCI CD-20 (fxtal = 10 MHz), the following numbers work
(although they are not unique):

N=60, V=1, M=10, R=2, H=1, L=1, X=1

To achieve 125 Hz in a PCI CD-20 (fxtal = 10 MHz), the following numbers work (although they are
not unique):

N=50, V=1, M=10, R=8, H=5, L=50, X=100
The output clock has a wide range of values, but the frequency limitations at different stages limits the
ultimate ability to exactly hit any specific frequency.
An example, the PLL reference frequency can be as low as 200 KHz: that would seem to allow steps of
200,000 in the VCO output. Unfortunately, since the maximum VCO output is 50 MHz and the
nprogrammable divider only goes to 127, the loop cannot lock unless V is set to 8, giving 1.6 MHz
minimum steps. Now if R is set to 8, we can get 200 KHz steps at fxilinx. The lowest frequency in this
case is at N=32 (6.4 MHz) to N=127 (25.4 MHz), in 200 KHz steps.
The following three library routines help compute the output clock frequency:

Routine Description
edt_find_vco_frequency Computes the phase-locked loop parameters necessary to match (or

approximate) the supplied target frequency.
edt_set_pll_clock Sets the phase-locked loop circuit to the value computed by

edt_find_vco_frequency. Includes debugging information.
edt_set_out_clock Sets the phase-locked loop circuit to the value computed by

edt_find_vco_frequency. Does not include debugging information.
Table 1. Output Clock Generation Library Routines

edt_find_vco_frequency

Description
Computes the phase-lock loop parameters described in Figure 1 that are necessary to match or
closely approximate the supplied target frequency, and builds the edt_pll structure with these
computed values. Because of the hardware constraints described in the Legend to Figure 1, the
target frequency may not be possible. This routine returns the actual frequency calculated.
Note This routine computes the necessary values but does not set the phase-locked loop

circuit. To set the circuit, use edt_set_out_clock or edt_set_pll_clock, described next.

Syntax
#include “edtinc.h”

double edt_find_vco_frequency (EdtDev *edt_p, double target,
double xtal, edt_pll *pll, int verbose);

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 57

Arguments
edt_p device handle returned from edt_open
target desired output frequency in Hz
xtal base frequency of the PCI CD board:

PCI CD use XTAL20
PCI CD use XTAL60

Verbose a value of 1 prints a description to stdout, useful for debugging ; a value of 0
turns off verbose output

Return
The actual frequency, in Hertz, computed for the edt_pll structure.

edt_set_pll_clock

Description
Sets the phase-locked loop circuit to the parameters described in Figure and computed using
edt_find_vco_frequency, above. This routine enables the phase-locked loop by setting
the appropriate bits in the FUNCT register, and then calls edt_set_out_clock to set the
circuit as required.

Syntax
#include "edtinc.h"

void edt_set_pll_clock(EdtDev *edt_p, double xtal, edt_pll
*pll, int verbose);

Arguments
edt_p device handle returned from edt_open
xtal base frequency of PCI CD/CDa board:

PCI CD-20 use XTAL20
PCI CD-60 use XTAL60

pll the structure containing the values necessary to set the phase-locked loop circuit,
as described in Figure 1.

verbose a value of 1 prints a description to stdout, useful for debugging; a value of 0 turns
off verbose output

Return
None.

edt_set_out_clock

Description
Sets the phase-locked loop circuit to the parameters described in Figure 1 and computed using
edt_find_vco_frequency.

Syntax
#include "edtinc.h"

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 58

void edt_set_out_clock(EdtDev *edt_p, edt_pll *pll);

Arguments
edt_p device handle returned from edt_open.
pll the structure containing the values necessary to set the phase-locked loop circuit, as

described in Figure 1.

Return
None.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 59

PCI CDa Output Clock Generation
The PCI CDa has one programmable clock with a range of 168 Hz to 100 MHz. Most frequencies
between these extremes can be achieved with little error. (Some FPGA bitfiles may allow an extended
range of up to 200 MHz.)
The programmable clock has an ICS307-02 clock generator (from Integrated Circuit Systems,
www.icst.com) followed by a 14-bit programmable divider. The reference clock to the ICS307-02 is
10.3861 MHz.
Note: Seee set_ss_vco.c as an example.

The following three routines provided by EDT handle the clock generators:

edt_find_vco_frequency_ics307
Description
Computes the PLL parameter for the ICS307 chip, based on an input clock frequency (xtal)
and a target frequency (target). The EdtDev pointer is not required; it can be set to NULL. If
the xtal value is 0, there should be an EdtDev pointer that can be used to determine the
reference clock frequency.
The nodivide version turns off the final divide by 2 in the FPGA code; if the current bitfile
supports that, frequencies greater than 100 MHz can be targeted.

Syntax
#include “edtinc.h”

#include “edt_ss_vco.h”

double edt_find_vco_frequency_ics307(EdtDev *edt_p, double
target, double xtal, edt_pll *pll, int verbose)

double edt_find_vco_frequency_ics307_nodivide(EdtDev *edt_p,
double target, double xtal, edt_pll *pll, int verbose)

Arguments
edt_p Device handle returned from edt_open.
target Desired output frequency in Hz.
xtal The base frequency of the PCI SS board. Default is 10.3681 MHz.
verbose A value of 1 prints a summary of the results to stdout. A value of 0 turns

off output.

Return
The return value is the actual frequency found that comes closest to the target frequency. The
PLL structure returns the values required for edt_set_frequency_ics307.

http://www.icst.com/

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 60

edt_set_out_clk_ics307
Description
Sets the frequency output on the PCI CDa board, using parameters computed by
edt_find_vco_frequency_ics307. The clock_channel command selects the
clock channel to which this should be applied. The CDa has only one clock channel; therefore,
the channel ID should always be set to 0.

Syntax
#include “edtinc.h”

#include “edt_ss_vco.h”

void edt_set_out_clk_ics307(EdtDev *edt_p, edt_pll *clk_data,
int clock_channel);

Arguments
edt_p Device handle returned from edt_open.
clk_data The edt_pll structure filled in by

edt_find_vco_frequency_ics307 or
edt_find_vco_frequency_ics307_nodivide.

clock_channel Channel ID (0)

edt_set_frequency_ics307

Description
This is a convenience function that first calls edt_find_vco_frequency_ics307 to
compute the parameters for the ICS307 PLL chip, then calls edt_set_out_clk_ics307
to set the frequency on the desired channel. If the target frequency is greater than 100 MHz,
edt_find_vco_frequency_ics307_nodivide is used instead of
edt_find_vco_frequency_ics307. The CDa has only one clock channel; therefore,
the channel ID should always be set to 0.

Syntax
#include “edtinc.h”

#include “edt_ss_vco.h”

double edt_set_frequency_ics307(EdtDev *edt_p, double ref_xtal,
double target, int clock_channel)

Arguments
edt_p Device handle returned from edt_open.
target The desired output frequency in Hz.
xtal The base frequency of the PCI CDa board. Default is 10.3681 MHz
clock_channel Channel ID (0)

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 61

Hardware Interface Protocol
This section describes how to connect your device to an PCI CD/CDa interface, including the electrical
characteristics of the signal, the signal descriptions, the timing specifications, and the connector pinout.

Electrical Interface
The PCI CD/CDa uses differential data transmission to transmit data at very high rates over long
distances through noisy environments. Differential transmission nullifies the effects of ground shifts
and noise. These effects appear as common mode voltages on the transmission line and are rejected by
the receiver. A typical balanced differential circuit is shown below.

driver twisted pair cable receiver

100 ohm typ.

Figure 2. Balanced Differential Circuit

The interface is implemented with 32 signals, each implemented as a differential pair of wires.

RS422
The PCI CD-20 DMA interface protocol uses RS422 signal levels. RS422 is defined by the Electronic
Industries Association to provide robust high-speed data transmission. It allows signaling rates up to
10 MHz for short cables of up to 12 meters (40 feet) and cables of up to 1219 meters (4000 feet) at 100
KHz, as shown in Figure 3.
For further information, see the EIA RS422-A standard, Electrical Characteristics of Balanced Voltage
Digital Interface Circuits, Dec. 1978, available from the Electronic Industries Association, Engineering
Department, 2001 Eye St. N.W., Washington, D.C. 20006.

10m

10k

90k

100k 1M 10M

100m

1,000m
1,200m

10,000m

C
ab

le
 le

n
g

th
 (

m
et

er
s)

Data rate (bits/second)
Figure 3. RS422 Data Signalling Rate and Cable Length

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 62

Pseudo-ECL
The PCI CD-40 DMA interface protocol uses AT&T pseudo-emitter-coupled logic (PECL) signal
levels. Pseudo-ECL levels are ECL levels that are shifted by 5 volts to run on a single +5 volts power
supply. These devices are excellent for minimizing electromagnetic interference where data must be
transmitted at very high speeds.

10m

10k 100k 1M 10M

100m

1,000m

10,000m

C
ab

le
 le

n
g

th
 (

m
et

er
s)

Data rate (bits/second)

PECL Data Signaling Rate and Cable Length

For further information, see The 41 Series of High Performance Line Drivers, Receivers, and
Transceivers, Jan. 1991 Data Book and Designers Guide, available from AT&T Microelectronics,
CA91-001DBIP.

LVDS
The PCI CD-60 DMA interface protocol uses low-voltage differential signaling, a new standard for
faster signaling at lower power, compatible with IEEE 1596.3 SCI LVDS standard, and conforming to
ANSI/TIA/EIA-644 LVDS standard.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 63

Signals
The hardware flow control protocol assumes that FIFO or memory buffers on both ends implement
almost-full and almost-empty thresholds. Therefore, when a “not ready to accept data” signal is sent to
the transmitting device, the receiver can still accommodate enough data to allow for cable delay and
synchronization.

Signal PCI CD I/O Description
DAT(15:0) I/O Sixteen bi-directional data lines for DMA data.
STAT(3:0) I Four general-purpose control inputs. Any can be enabled to

interrupt the PCI bus host.
FUNCT(3:0) O Four general-purpose program control outputs. Can be used to

reset the user device or indicate DMA direction for bi-directional
devices.

SENDT O Send Timing is a constant clock driven by the DMA interface
that can be used by the user device to generate the receive
timing. This signal does not hae to be used. The PCI CD-20
outputs a 10 MHz clock. The PCI CD-40 outputs a 20 MHz
clock.

RXT I Receive Timing is an input to the DMA device. When the
pcd_looped.bit configuration is used, the RXT signal frequency
must be generated by the external device. When the pcd_src.bit
is used, the RXT signal must be looped back from the SENDT
signal. It is best, although not required, that this signal is a
continuous clock. Data clocked into the DMA interface must
propagate through pipelining registers before it can be
transferred into PCI bus memory. If the RXT clock stops, data is
left in this pipe instead of being transferred to host memory.

TXT O Transmit Timing is an output from the DMA interface. TXT
synchronizes the DMA output data and control signals. TXT is
either internally generated from the same source as SENDT, or
looped back from RXT.

IDV I Input Data Valid is asserted by the device synchronous with
RXT, to tell the DMA interface that data on the DATA(15:0)
signals are valid and must be registered and transferred to the
PCI bus memory. The DMA interface will accomplish this unless
the BNR signal has been asserted for >32 IDV signals.

BNR O Bus Not Ready is asserted by the DMA interface synchronous
with TXT when 32 bytes or fewer of data space remains for input
data from the device. This warns you to stop the data transfer or
prepare for overflow.

ODV O Output Data Valid is asserted by the DMA interface when it has
placed valid output data on DATA(15:0). ODV is asserted
synchronously with the TXT clock, and only if the DNR signal is
not asserted.

DNR I Device Not Ready is asserted by the device synchronous with
the RXT clock when the user device is about to run out of space
for storing data from the DMA interface. The amount of overrun
buffer required in the device varies according to the cable
length. The PCI CD may produce four or more words of valid

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 64

Signal PCI CD I/O Description
data after DNR is presented to the input pins.

Table 4. Signals

Timing
The clock and data output timing is specified at the pins of the PCI CD/CDa connector.

 PCI CD-20 PCI CD-40 PCI CD-60
Clock frequency 0-10 MHz 0-20 MHz 0-30 MHz
Clock duty cycle 50% ± 10 ns 50% ± 5 ns 50% ± 5 ns
Input minimum setup time 20 ns 5 ns 5 ns
Input minimum hold time 25 ns 6 ns 6 ns
Output maximum propagation delay 20 ns 10 ns 10 ns

Table 5. Timing Specifications
The following figure shows the PCI CD timing:

Typical DMA data read handshake
Input FIFO gets almost full and then empties

FROM DEVICE TXT

FROM DEVICE DNR
FROM DEVICE IDV

FROM DEVICE DAT (IN)

FROM PCI CD TXT

FROM PCI CD BNR

L L

Typical DMA data write handshake
User device needs to hold data out

FROM PCI CD TXT L L

Typical data output startup
User device is ready (DNR = FALSE)

The number of ODV deassertion depends on the frequency of the TXT clock and
the PCI BUS response of the host.
To minimize or prevent ODV deassertions, align the memory buffer so data is
transferred from a 64 byte boundary. Then the first PCI BUS transfer will be in
burst mode.

FROM PCI CD TXT L L

L L

FROM DEVICE RXT L L

FROM DEVICE RXT
FROM DEVICE DNR

L L

L

H

L

H

FROM PCI CD BNR
FROM PCI CD ODV

FROM PCI CD ODV

L

H

L

H

FROM PCI CD BNR L L

L L

L
H

L
H

FIFO495 FIFO496 FIFO497 FIFO498 FIFO499 FIFO500 FIFOxxx +1 +2 +3 +4 +5

FROM PCI CD DAT (OUT) L
H

L
H

DATAN +1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +11

FROM PCI CD DAT (OUT)
L
H

L
H

DATA0 1 2 3 4 5 6 7 8 9 10 11

L L

FROM DEVICE DNR L L

L
H

Figure 6. Timing Specifications

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 65

Connector Pinout
The PCI CD/CDa board uses a high-density 80-pin I/O connector, AMP part number 787190-8. The
cable uses a straight-shielded backshell (AMP P/N 749196-2) or right angle backshell (AMP P/N
749621-8).
The following pinout describes the connection from the PCI CD/CDa board to the cable.
Note: Do not connect your own circuits to the unused pins, as they may be internally connected to the
PCI CD/CDa.
Note: If you’re using the PMC version of the PCI CD, consult the PMC Supplement for the PCI CD
and PCI DVK, EDT part number 008-01356, for the correct pinout.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 66

AMP Signal AMP Signal
1 Ground 41 Ground
2 Ground 42 Ground
3 DATI4+ 43 DATI0+
4 DATI4– 44 DATI0–
5 DATI5+ 45 DATI1+
6 DATI5– 46 DATI1–
7 DATI6+ 47 DATI2+
8 DATI6– 48 DATI2–
9 DATI7+ 49 DATI3+

10 DATI7– 50 DATI3–
11 DATO4+ 51 DATO0+
12 DATO4– 52 DATO0–
13 DATO5+ 53 DATO1+
14 DATO5– 54 DATO1–
15 DATO6+ 55 DATO2+
16 DATO6– 56 DATO2–
17 DATO7+ 57 DATO3+
18 DATO7– 58 DATO3–
19 SPARE 0+ 59 SPARE0–
20 +5V 60 +5V
21 SPARE 1+ 61 SPARE1–
22 SPARE 2+ 62 SPARE2–
23 Ground 63 Ground
24 STAT0+ 64 RXT+
25 STAT0– 65 RXT–
26 STAT1+ 66 IDV+
27 STAT1– 67 IDV–
28 STAT2+ 68 DNR+
29 STAT2– 69 DNR–
30 STAT3+ 70 Reserved+

31 STAT3– 71 Reserved–
32 FUNCT0+ 72 SENDT+
33 FUNCT0– 73 SENDT–
34 FUNCT1+ 74 ODV+
35 FUNCT1– 75 ODV–
36 FUNCT2+ 76 BNR+
37 FUNCT2– 77 BNR–
38 FUNCT3+ 78 TXT+
39 FUNCT3– 79 TXT–
40 Ground 80 Ground

Table 7. PCI CD (pcd8_src.bit)

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 67

AMP Signal AMP Signal
1 Ground 41 Ground
2* Ground 42* Ground
3 DAT4+ 43 DAT0+
4 DAT4– 44 DAT0–
5 DAT5+ 45 DAT1+
6 DAT5– 46 DAT1–
7 DAT6+ 47 DAT2+
8 DAT6– 48 DAT2–
9 DAT7+ 49 DAT3+

10 DAT7– 50 DAT3–
11 DAT12+ 51 DAT8+
12 DAT12– 52 DAT8–
13 DAT13+ 53 DAT9+
14 DAT13– 54 DAT9–
15 DAT14+ 55 DAT10+
16 DAT14– 56 DAT10–
17 DAT15+ 57 DAT11+
18 DAT15– 58 DAT11–
19 SPARE 0+ 59 SPARE0–
20 +5V 60 +5V
21 SPARE 1+ 61 SPARE1–
22 SPARE 2+ 62 SPARE2–
23 Ground 63 Ground
24 STAT0+ 64 RXT+
25 STAT0– 65 RXT–
26 STAT1+ 66 IDV+
27 STAT1– 67 IDV–
28 STAT2+ 68 DNR+
29 STAT2– 69 DNR–
30 STAT3+ 70 Reserved+

31 STAT3– 71 Reserved–
32 FUNCT0+ 72 SENDT+
33 FUNCT0– 73 SENDT–
34 FUNCT1+ 74 ODV+
35 FUNCT1– 75 ODV–
36 FUNCT2+ 76 BNR+
37 FUNCT2– 77 BNR–
38 FUNCT3+ 78 TXT+
39 FUNCT3– 79 TXT–
40 Ground 80 Ground

Table 8. PCI CD and PCI CDa (pcd_src.bit, pcd_looped.bit, pcda.bit)

*On PCI CDa, these pins are Spare.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 68

P3 Channel–Pin Signal P3 Channel–Pin Signal
1 CH1–25 Ground 41 CH2–25 Ground
2 CH1–25 Ground 42 CH2–25 Ground
3 CH2–3 CH2D0+ 43 CH1–3 CH1D0+
4 CH2–4 CH2D0– 44 CH1–4 CH1D0–
5 CH2–5 CH2D1+ 45 CH1–5 CH1D1+
6 CH2–6 CH2D1– 46 CH1–6 CH1D1–
7 CH2–7 CH2D2+ 47 CH1–7 CH1D2+
8 CH2–8 CH2D2– 48 CH1–8 CH1D2–
9 CH2–9 CH2D3+ 49 CH1–9 CH1D3+

10 CH2–10 CH2D3– 50 CH1–10 CH1D3–
11 CH4–3 CH4D0+ 51 CH3–3 CH3D0+
12 CH4–4 CH4D0– 52 CH3–4 CH3D0–
13 CH4–5 CH4D1+ 53 CH3–5 CH3D1+
14 CH4–6 CH4D1– 54 CH3–6 CH3D1–
15 CH4–7 CH4D2+ 55 CH3–7 CH3D2+
16 CH4–8 CH4D2– 56 CH3–8 CH3D2–
17 CH4–9 CH4D3+ 57 CH3–9 CH3D3+
18 CH4–10 CH4D3– 58 CH3–10 CH3D3–
19 Not used 59 Not used
20 5V DC (fused) 60 5V DC (fused)
21 Not used 61 Not used
22 Not used 62 Not used
23 CH3–25 Ground 63 CH4–25 Ground
24 Reserved 64 CH1–1 CH1CLK+
25 Reserved 65 CH1–2 CH1CLK–
26 Reserved 66 Reserved
27 Reserved 67 Reserved
28 Reserved 68 Reserved
29 Reserved 69 Reserved
30 Reserved 70 CH3–1 CH3CLK+
31 Reserved 71 CH3–2 CH3CLK–
32 CH2–1 CH2CLK+ 72 Reserved
33 CH2–2 CH2CLK– 73 Reserved
34 Reserved 74 Reserved
35 Reserved 75 Reserved
36 Reserved 76 Reserved
37 Reserved 77 Reserved
38 CH4–1 CH4CLK+ 78 Reserved
39 CH4–2 CH4CLK– 79 Reserved
40 CH3–25 Ground 80 CH4–25 Ground

Table 9. PCI CD (ssd.bit, ssd2.bit, ssd4.bit)

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 69

P3 Channel–Pin Signal P3 Channel–Pin Signal
1 CH1–25 Ground 41 CH2–25 Ground
2 CH1–25 Ground 42 CH2–25 Ground
3 CH2–3 CH2D0+ 43 CH1–3 CH1D0+
4 CH2–4 CH2D0– 44 CH1–4 CH1D0–
5 CH2–5 CH2D1+ 45 CH1–5 CH1D1+
6 CH2–6 CH2D1– 46 CH1–6 CH1D1–
7 CH2–7 CH2D2+ 47 CH1–7 CH1D2+
8 CH2–8 CH2D2– 48 CH1–8 CH1D2–
9 CH2–9 CH2D3+ 49 CH1–9 CH1D3+

10 CH2–10 CH2D3– 50 CH1–10 CH1D3–
11 CH4–3 CH4D0+ 51 CH3–3 CH3D0+
12 CH4–4 CH4D0– 52 CH3–4 CH3D0–
13 CH4–5 CH4D1+ 53 CH3–5 CH3D1+
14 CH4–6 CH4D1– 54 CH3–6 CH3D1–
15 CH4–7 CH4D2+ 55 CH3–7 CH3D2+
16 CH4–8 CH4D2– 56 CH3–8 CH3D2–
17 CH4–9 CH4D3+ 57 CH3–9 CH3D3+
18 CH4–10 CH4D3– 58 CH3–10 CH3D3–
19 Not used 59 Not used
20 5V DC (fused) 60 5V DC (fused)
21 Not used 61 Not used
22 Not used 62 Not used
23 CH3–25 Ground 63 CH4–25 Ground
24 Reserved 64 CH1–1 CH1CLK+
25 Reserved 65 CH1–2 CH1CLK–
26 Reserved 66 Reserved
27 Reserved 67 Reserved
28 Reserved 68 Reserved
29 Reserved 69 Reserved
30 Reserved 70 CH3–1 CH3CLK+
31 Reserved 71 CH3–2 CH3CLK–
32 CH2–1 CH2CLK+ 72 Reserved
33 CH2–2 CH2CLK– 73 Reserved
34 Reserved 74 Reserved
35 Reserved 75 Reserved
36 Reserved 76 Reserved
37 Reserved 77 Reserved
38 CH4–1 CH4CLK+ 78 Reserved
39 CH4–2 CH4CLK– 79 Reserved
40 CH3–25 Ground 80 CH4–25 Ground

Table 10. PCI CD (ssdout1.bit, ssdio.bit, ssdio_neg.bit)

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 70

P3 Channel–Pin P3 Channel–Pin
1 Ground 41 Ground
2 Ground 42 Ground
3 CH2D+ 43 CH0D+
4 CH2D– 44 CH0D–
5 CH2CLK+ 45 CH0CLK+
6 CH2CLK– 46 CH0CLK–
7 CH3D+ 47 CH1D+
8 CH3D– 48 CH1D–
9 CH3CLK+ 49 CH1CLK+

10 CH3CLK– 50 CH1CLK–
11 CH6D+ 51 CH4D+
12 CH6D– 52 CH4D–
13 CH6CLK+ 53 CH4CLK+
14 CH6CLK– 54 CH4CLK–
15 CH7D+ 55 CH5D+
16 CH7D– 56 CH5D–
17 CH7CLK+ 57 CH5CLK+
18 CH7CLK– 58 CH5CLK–
19 EXTCLKIN+ 59 EXTCLKIN–
20 +5V 60 +5V
21 Spare 61 Spare
22 Spare 62 Spare
23 Spare 63 Spare
24 CH8D+ 64 CH10D+
25 CH8D– 65 CH10D–
26 CH8CLK+ 66 CH10CLK+
27 CH8CLK– 67 CH10CLK–
28 CH9D+ 68 CH11D+
29 CH9D– 69 CH11D–
30 CH9CLK+ 70 CH11CLK+
31 CH9CLK– 71 CH11CLK–
32 CH12D+ 72 CH14D+
33 CH12D– 73 CH14D–
34 CH12CLK+ 74 CH14CLK+
35 CH12CLK– 75 CH14CLK–
36 CH13D+ 76 CH15D+
37 CH13D– 77 CH15D–
38 CH13CLK+ 78 CH15CLK+
39 CH13CLK– 79 CH15CLK–
40 GROUND 80 GROUND

Table 11. PCI CDa (ssd16io.bit)

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 71

Registers
The PCI CD/CDa has two memory spaces: the memory-mapped registers and the configuration space.
Expansion ROM and I/O space are not implemented.
Applications can access the PCI CD/CDa registers through the DMA library routines edt_reg_read
or edt_reg_write using the name specified under “Access,” or if necessary by means of ioctl calls
with PCI CD/CDa-specific parameters, as defined in the file pcd.h.

Configuration Space
The configuration space is a 64-byte portion of memory required to configure the PCI Local Bus and to
handle errors. Its structure is specified by the PCI Local Bus specification. The structure as
implemented for the PCI CD/CDa is as shown in Figure 6 and described below.

Address Bits 31 16 15 0

0x00 Device ID: PCD.SSD = 26
 PCD64 = 26

 PCD16 = 27

Vendor ID = 0x123D

0x04 Status (see below) Command (see below)

0x08 Class Code = 0x088000 Revision ID = 0
(will be updated)

0x0C BIST = 0x00 Header Type =
0x00

Latency Timer
(set by OS)

Cache Line Size
(set by OS)

0x10 DMA Base Address Register* (set by OS)

0x14 Remote Xilinx Memory-Mapped IO Base Address Register (set by OS)

 not implemented

0x3C Max_Lat = 0x04 Min_Gnt = 0x04 Interrupt Pin =
0x01

Interrupt Line (set
by OS)

Figure 2. Configuration Space Addresses
Values for the status and command fields are shown in Tables 6 and 7. For complete descriptions of the
bits in the status and command fields, see the PCI Local Bus Specification, Revision 2.1, 1995,
available from:
PCI Special Interest Group
5440 SW Westgate Drive Suite 217
Portland, OR 97221
Phone: 800/433-5177 (United States) or 425/803-1191 (international)
Fax: 503/222-6190
www.pcisig.com

http://www.pcisig.com/

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 72

Bit Name Value Bit Name Value

0–4 reserved 0 10 DEVSEL Timing 0

5 66 MHz Capable 1 11 Signaled Target Abort implemented

6 UDF Supported 0 12 Received Target Abort implemented

7 Fast Back-to-back
Capable

0 13 Received Master Abort implemented

8 Data Parity Error
Detected

implemented 14 Signaled System Error implemented

9 DEVSEL Timing 1 15 Detected Parity Error implemented

Table 12. Configuration Space Status Field Values

Bit Name Value Bit Name Value

0 IO Space 0 6 Parity Error Response implemented

1 Memory Space implemented 7 Wait Cycle Control 0

2 Bus Master implemented 8 SERR# Enable implemented

3 Special Cycles 0 9 Fast Back-to-back
Enable

implemented

4 Memory Write and
Invalidate Enable

implemented 10–
15

reserved 0

5 VGA Palette Snoop 0

Table 13. Configuration Space Status Field Values

PCI Local Bus Addresses
Figure describes the PCI CD/CDa interface registers in detail. The addresses listed are offsets from
the gate array boot ROM base addresses. This base address is initialized by the host operating system at
boot time.

Note The addresses 0x80 and 0x84 are used by the pciload utility to update the gate array. User
applications must not modify use these registers. Results of running pciload do not take effect
until after the board has been turned off and then on again.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 73

Address Bits 31 16 15 0

0xCC remote Xilinx data

0xC8 PCI interrupt status

0xC4 PCI interrupt and remote Xilinx configuration

0x84 not used flash ROM data

0x80 flash ROM address

0x20 not used

0x1C scatter-gather DMA next count and control

0x18 scatter-gather DMA current count and control

0x14 scatter-gather DMA next address

0x10 scatter-gather DMA current address

0x0C main DMA next count and control

0x08 main DMA current count and control

0x04 main DMA next address

0x00 main DMA current address

 3 2 1 0 Byte Word

 1 0

Table 14. PCI Local Bus Addresses

Scatter-gather DMA
PCI Direct Memory Access (DMA) devices in Intel-based computers access memory using physical
addresses. Because the operating system uses a memory manager to connect the user program to
memory, memory pages that appear contiguous to the user program are actually scattered throughout
physical memory. Because DMA accesses physical addresses, a DMA read operation must gather data
from noncontiguous pages, and a write must scatter the data back to the appropriate pages. The EDT
Product driver uses information from the operating system to accomplish this. The operating system
passes the driver a list of the physical addresses for the user program memory pages. With this
information, the driver builds a scatter-gather (SG) table, which the DMA device uses sequentially.
Most other PCI computers offer memory management for the PCI bus as well, so the operating system
needs to pass only the address and count for DMA. The addresses appear contiguous to the PCI bus.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 74

The scatter-gather DMA list is stored in memory. The scatter-gather DMA channel copies it as required
into the main DMA registers. The format of the DMA list in memory is as follows (illustrated in Figure
1):
Each page entry takes eight bytes. Therefore, the scatter-gather DMA count is always evenly divisible
by eight.
The first word consists of the 32-bit start address of a memory page.
The most significant 16 bits of the second word contain control data.
The least significant 16 bits of the second word contain the count.
As of the current release, only bit 16 contains control information. When set to one, and when enabled
by setting bit 28 of the Scatter-gather DMA Next Count and Control register, this bit causes the main
DMA interrupt to be set when the marked page is complete.

Bits 63 32 31 16 0

Each entry address control (unused) DMA int count

Table 15. Scatter-gather DMA List Format

Performing DMA

All main DMA registers are read-only. Only the corresponding scatter-gather DMA registers must
write to them. To initiate a DMA transfer:
1. Set up one or more scatter-gather DMA lists in host memory, using the format described above and

illustrated in Figure 6.
2. Write the address of the first entry in the list to the Scatter-gather Next DMA Address register.
3. Write the length of the scatter-gather DMA list to the Scatter-gather Next DMA Count and Control

register, setting the interrupts as you require. Ensure that bit 29 of this register is set to 1: this starts
the DMA.

4. If the DMA list is greater than one page, load the address of the first entry of the next page and its
length, as described in steps 2 and 3, when bit 29 of the Scatter-gather Next DMA Count and
Control register is asserted.

Main DMA Current Address Register

Size 32-bit

I/O read-only

Address 0x00

Access EDT_DMA_CUR_ADDR

Comments Automatically copied from the main DMA next address register after main
DMA completes.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public Revision: I December 2004
Template: edt.dot Page 75

Bit Description
A31–0 The address of the current DMA or the last used address if no DMA is currently

active.

Main DMA Next Address Register

Size 32-bit

I/O read-only

Address 0x04 + (channel number x 20 hex)

Access EDT_DMA_NXT_ADDR

Comments The scatter-gather DMA fills this register when required from the scatter-
gather DMA list.

Bit Description
A31–0 Read the starting address of the next DMA.

Main DMA Current Count and Control Register

Size 32-bit

I/O read-only

Address 0x08

Access EDT_DMA_CUR_CNT

Comments This register automatically copied from the main DMA next count and
control register after main DMA completes.

Bit Description
A31–16 Read-only versions of bits 31–16 of the scatter-gather DMA current count and

control register.
D15–0 The number of words still to be transferred in the current DMA.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public December 2004
Template: edt.dot Page 76

Main DMA Next Count and Control Register

Size 32-bit

I/O read-only

Address 0x0C

Access EDT_DMA_NXT_CNT

Comments The scatter-gather DMA fills this register when required from the scatter-
gather DMA list.

Bit Description
A31–16 Read-only versions of bits 31–16 of the scatter-gather DMA next count and

control register.
D15–0 The number of words still to be transferred in the current DMA.

Scatter-gather DMA Current Address Register

Size 32-bit

I/O read-only

Address 0x10

Access EDT_SG_CUR_ADDR

Comments Automatically copied from the scatter-gather DMA next address register
when that register is valid and the current scatter-gather DMA completes.

Bit Description
A31–0 The address of the current DMA or the last used address if no DMA is currently

active.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public December 2004
Template: edt.dot Page 77

Scatter-gather DMA Next Address Register

Size 32-bit

I/O read-write

Address 0x14

Access EDT_SG_NXT_ADDR

Comments The driver software writes this register as described in step 2 of the list in the
Performing DMA section on page 74.

Bit Description
A31–0 The starting address of the next DMA.

Scatter-gather DMA Current Count and Control Register

Size 32-bit

I/O read-only

Address 0x18

Access EDT_SG_CUR_CNT

Comments The driver software can read this register for debugging or to monitor DMA
progress.

Bit Description
A31–16 Read-only versions of bits 31–16 of the scatter-gather DMA next count and

control register.
D15–0 The number of words still to be transferred in the current DMA.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public December 2004
Template: edt.dot Page 78

Scatter-gather DMA Next Count and Control Register

Size 32-bit

I/O read-write

Address 0x1C

Access EDT_SG_NXT_CNT

Comments The driver software writes this register as described in step 2 of the list in the
Performing DMA section on page 74.

Bit EDT_ Description
D31 EN_RDY Enable scatter-gather next empty interrupt. A value of 1

enables DMA_START (bit 29 of this register) to set
DMA_INT (bit 12 of the Status register), thus causing an
interrupt if the PCI_EN_INTR bit is set (bit 15 of the Main
DMA Command and Configuration register).
A value of 0 disables the DMA_START from causing an
interrupt.

D30 DMA_DONE Read-only: a value of 0 indicates that a scatter-gather DMA
transfer is currently in progress. A value of 1 indicates that
the current scatter-gather DMA is complete.

D29 DMA_START Write a 1 to this bit to indicate that the values of this
register and the SG DMA Next Address register are valid;
this sets this bit to 0, indicating either that the copy is in
progress, or that the device is waiting for the current DMA
to complete. In either case, this register and the SG DMA
Next Address register are not available for writing.
Reading a value of 1 indicates that the SG DMA Next
Count and SG DMA Next Address registers have been
copied into the SG DMA Current Count and SG DMA
Current Address registers and that the Next Count and
Next Address registers are once more available for writing.

D28 EN_MN_DONE A value of 1 enables the main DMA page done interrupt (bit
18).

D27 EN_SG_DONE Enable scatter-gather DMA done interrupt. A value of 1
enables DMA_DONE (bit 30 of this register) to set
DMA_INT (bit 12 of the Status register), thus causing an
interrupt if the PCI_EN_INTR bit is set (bit 15 of the Main
DMA Command and Configuration register).
A value of 0 disables the DMA_DONE from causing an
interrupt.

D26 DMA_ABORT A value of 1 stops the DMA transfer in progress and
cancels the next one, clearing bits 29 and 30. Always 0
when read.

D25 DMA_MEM_RD A value of 1 specifies a read operation; 0 specifies write.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public December 2004
Template: edt.dot Page 79

D24 BURST_EN A value of 0 means bytes are written to memory as soon as
they are received. A value of 1 means bytes are saved to
write the most efficient number at once.

D23 MN_DMA_DONE Read only: a value of 1 indicates that the main DMA is not
active.

D22 MN_NXT_EMP Read only: a value of 1 indicates that the main DMA next
address and next count registers are empty.

D21–19 Reserved for EDT internal use.

D18 PG_INT Read-only: a value of 1 indicates that the page interrupt is
set (enabled by bit 28 of this register), and that the main
DMA has completed transferring a page for which bit 16
(the page interrupt bit) was set in the scatter-gather DMA
list (see Figure 6). If the PCI interrupt is enabled (bit 15 of
the PCI interrupt and remote Xilinx configuration register),
this bit causes a PCI interrupt.

Clear this bit by disabling the page done interrupt (bit 28 of
this register).

D17 CURPG_INT Read-only: a value of 1 indicates that bit 16, the page
interrupt bit, was set in the scatter-gather DMA list entry for
the current main DMA page.

D16 NXTPG_INT Read-only: a value of 1 indicates that bit 16, the page
interrupt bit, was set in the scatter-gather DMA list entry for
the next main DMA page.

D15–0 The number of bytes in the next scatter-gather DMA list.

Flash ROM Access Registers

Flash ROM Address Register

Size 32-bit

I/O read-write

Address 0x80

Access EDT_FLASHROM_ADDR

Comment Use this register and the flash ROM data register (below) to update the
program in the field-programmable gate array that implements the PCI
interface.

Bit Description
D31–25 Reserved for EDT internal use.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public December 2004
Template: edt.dot Page 80

D24 A value of 1 causes the data in the flash ROM data register to be written to
the address specified by bits 0 through 23. A value of 0 reads the data.

D23-0 Address of location in flash ROM that the next read or write will access.

Flash ROM Data Register

Size 32-bit

I/O read-write

Address 0x84

Access EDT_FLASHROM_DATA

Comment Use this register and the flash ROM address register (above) to update the
program in the field-programmable gate array that implements the PCI
interface.

Bit Description
D31–9 Not used
D8 A read-only bit indicating the position of the jumper that enables access to

the protected area of the ROM that contains the executable program. A
value of 1 indicates that the board can load a new program.

D7-0 The new program to load into flash ROM with a write operation (specified by
setting bit A24 in the flash ROM address register), or the data that was read
(specified by clearing bit A24 in the flash ROM address register).

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public December 2004
Template: edt.dot Page 81

Interrupt Registers

PCI Interrupt and Remote Xilinx Configuration Register

Size 32-bit

I/O read-write

Address 0xC4

Access EDT_REMOTE_OFFSET

Comment Remote Xilinx is also referred to as Interface or User Xilinx.

Bit EDT_ Description
D31–22 Not used.
D21 RMT_STATE Remote Xilinx INIT pin state. This bit is read-only.
D20 RMT_DONE Remote Xilinx DONE pin.
D19 RMT_PROG Remote Xilinx PROG pin.
D18 RMT_INIT Remote Xilinx INIT pin.
D17 EN_CCLK Enable one configuration clock cycle to remote Xilinx.
D16 RMT_DATA Remote Xilinx program data.
D15 PCI_EN_INTR Enable PCI interrupt.
D14 RMT_EN_INTR Enable Remote Xilinx interrupt.
D13–9 Not used.
D8 RFIFO_ENB After the remote Xilinx has been programmed to your

satisfaction:
1. Clear, then set bit D3 of the remote Xilinx command

register.
2. Set this bit to enable the burst data FIFO.

D7 Not used.
D6–0 RMT_ADDR 128-byte address of remote Xilinx register.

To program the remote Xilinx:
1. Set the PROG and INIT pins low.
2. Wait for DONE (D20) to be low.
3. Set the PROG and INIT pins high.
4. Loop until INIT state (D21) goes high.
5. Wait four µs.
6. Write programming date, one bit at a time, to D16 with D17 high.
7. After all data is written, continue writing ones to D16 until DONE (D20)

goes high.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public December 2004
Template: edt.dot Page 82

The programming has failed if it has not completed after 32 clock cycles.

PCI Interrupt Status Register

Size 32-bit

I/O read-only

Address 0xC8

Access EDT_DMA_STATUS

Comments The driver uses this register initially to determine the source of a PCI
interrupt.

Bit EDT_ Description
D16–31 Not used.
D15 PCI_INTR PCI interrupt. When asserted, the PCI CD is asserting an

interrupt on the PCI bus.
D14 Not used.
D13 RMT_INTR Remote Xilinx interrupt. When asserted, the remote Xilinx

interrupt is set. If bits 14 and 15 of the the PCI interrupt and
remote Xilinx configuration register are aserted, the remote
Xilinx causes a PCI interrupt.

D12 DMA_INTR End of DMA interrupt. Asserted when at least one of the
DMA interrupts is asserted in the scatter-gather DMA next
count and control register. Causes a PCI interrupt if bit 15
of the PCI interrupt and remote Xilinx configuration register
is enabled.

D11–0 Not used.

Remote Xilinx Registers
The Xilinx chip is a programmable integrated circuit used to implement the PCI CD interface or to test
the board. The Xilinx programmable IC is programmed serially, using the PCI interrupt and remote
Xilinx configuration register as described on page 81.

Note The following registers are defined to control the interface and reside in the remote Xilinx IC.
In order to access those registers, the PCI CD requires that the remote Xilinx be loaded with a
program that defines them. If the Xilinx is not loaded, or loaded with a different program, these
registers are inaccessible.

The Xilinx IC is programmed when the PCI CD driver is loaded, or by the application program.
If you have received a customized application program for your PCI CD from Engineering
Design Team,some or all of these registers may not be defined. Consult the documentation
that came with your customized program instead.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public December 2004
Template: edt.dot Page 83

Command Register

Size 8-bit

I/O read-write

Address 0x00

Access PCD_CMD

Bit EDT_ Description
D0 DIR A value of 1 indicates data is coming in to the PCI CD.
D1 FORCEBNR A value of 1 tells device that board is not ready.
D2 DATA_INV If this bit is set, the PCI CD inverts the data.
D3 ENABLE Set to 1 to enable the PCI CD interface. This bit is set after

the direction is chosen and typically after the first DMA
buffer is ready. To reset direction or flags this bit must be
reset.
To flush the DMA FIFOs, clear then set this bit.

D4-7 STAT_INT_EN A value of 1 enables the corresponding STAT bit to cause
an interrupt when it is asserted.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public December 2004
Template: edt.dot Page 84

Data Path Status Register

Size 8-bit

I/O read-only

Address 0x01

Access PCD_DATA_PATH_STAT

Bit EDT_ Description
D0 OF_NOT_EMP If this bit is set, the output FIFO is not empty.
D1 IF_NOT_EMP If this bit is set, the input FIFO is not empty.
D2 UNDERFLOW If the DNR signal is low and the ODV signal goes low

because the output FIFO runs out of data, this bit is
asserted and remains so throughout the data transfer.
Reset this bit with the ENABLE bit in the Command
register.

D3 OVERFLOW This bit is asserted when the input FIFO is full and the IDV
signal is high. Reset this bit with the ENABLE bit in the
Command register.

D4-5 INFFULL If set, input FF is full.
D6 INFFAFULL If set, input FF is almost full.
D7 IDV Reflects IDV state.

Funct Register

Size 8-bit

I/O read-write

Address 0x02

Access PCD_FUNCT

Bit PCD_ Description
D0-3 FUNCT Sets the state of the user-definable FUNCT outputs.
D4-6 FREQ6

FREQ7
SELAV

PCI CD: Used to program the PLL and select clock with the
EDT library routine edt_set_out_clock.
PCI CDa: Not used.

D7 PLLCLK Set to enable PLL.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public December 2004
Template: edt.dot Page 85

Stat Register

Size 8-bit

I/O read-only

Address 0x03

Access PCD_STAT

Bit PCD_ Description
D0-3 STAT The state of user-definable STAT input signals as last

sampled by the RXT clock signal.
D4-7 STAT_INT Interrupt bits for the status bits. If the following conditions

are both true, then the corresponding bit of these four can
be asserted to cause a PCI Bus interrupt:
• The device interrupt is enabled using the

RMT_EN_INTR bit in the PCI Interrupt and Remote
Xilinx Configuration register.

• The corresponding bit is asserted in the command
register (one of bits 4–7, named STAT_INT_EN).

The PCI Bus interrupt is then caused when the
corresponding STAT signal is asserted according to the
polarity specified in the stat polarity register. To reset the
interrupt, disable and re-enable the appropriate
STAT_INT_EN bit in the command register.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public December 2004
Template: edt.dot Page 86

Stat Polarity Register

Size 8-bit

I/O read-write

Address 0x04

Access PCD_STAT_POLARITY

Bit PCD_ Description
D0-3 POLARITY A value of 0 indicates that a change from 0 to 1 from one

clock cycle to the next causes an interrupt in the
corresponding bit of the STAT_INT register, if the
corresponding bit is also enabled in STAT_INT_EN.
A value of 1 causes the same event when the STAT_INT
bit changes from 1 to 0 from one clock cycle to the next.

D4 STAT_INT_ENA Provides global enable or disable for all interrupt bits in Stat
register, allowing the driver to disable and re-enable them
in one operation, without altering the state of the Stat
register. This bit is used mainly by the driver to disable the
Stat interrupts to determine which other interrupts are
pending. A value of 1 enables the interrupts.

D5 ENA_OUT_CTRL When set, enables the OUTPUT DISABLE signal on
pin 22. Not used on CDa boards.

D6-7 Not used.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public December 2004
Template: edt.dot Page 87

Direction Control Registers

Size 8-bit each

I/O read-write

Address A at 0x06, B at 0x07

Access PCD_DIRA and PCD_DIRB

Comments These registers determine whether the physical drivers or receivers on the
interface are inputs or outputs. Each pin on the PCI CD can be programmed
as either an input or an output. Pins are normally configured for inputs or
outputs as documented in the connector pinout shown on page 65. The PCI
CD driver modifies the data bits appropriately for a read or write system call.
Setting the same pins to serve as both input and output is useful for testing.
Setting the same pins to serve as neither input nor output is not useful.
Direction Control Register A controls the data direction; Direction Control
Register B controls the direction of the control bit.
For example, to implement the interface documented in the connector pinout
shown on page 65 for a write operation, set A to 0x0F and B to 0xCC. For a
read, set A to 0xF0 and B to 0xCC.

Register Bit Description
DC15 Pins 22 and 62 are outputs when this bit is low.
DC14 Pins 19, 59, 21, and 61 are outputs when this bit is low.
DC13 Pins 32–39 are outputs when this bit is low.
DC12 Pins 72–79 are outputs when this bit is low.
DC11 Pins 24–31 are outputs when this bit is low.
DC10 Pins 64–71 are outputs when this bit is low.
DC9 Pins 24–31 are inputs when this bit is low.

B

DC8 Pins 64–71 are inputs when this bit is low.
DC7 Pins 11–18 are outputs when this bit is low.
DC6 Pins 51–58 are outputs when this bit is low.
DC5 Pins 3–10 are outputs when this bit is low.
DC4 Pins 43–50 are outputs when this bit is low.
DC3 Pins 11–18 are inputs when this bit is low.
DC2 Pins 51–58 are inputs when this bit is low.
DC1 Pins 3–10 are inputs when this bit is low.

A

DC0 Pins 43–50 are inputs when this bit is low.

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public December 2004
Template: edt.dot Page 88

Programmed I/O Low Register

Size 8-bit

I/O read-write

Address 0x08

Access PCD_PIO_OUTLO

Bit PCD_ Description
7–0 Outputs data on the low 8 bits of the 16-bit word.

Programmed I/O High Register

Size 8-bit

I/O read-write

Address 0x09

Access PCD_PIO_OUTHI

Bit PCD_ Description
7–0 Outputs data on the high 8 bits of the 16-bit word.

Interface Configuration Register

Size 8-bit

I/O read-write

Address 0x0F

Access PCD_CONFIG

Bit PCD_ Description
0 BYTESWAP A value of 1 swaps the order of bytes in a 16-bit word of

data coming in from the data source.
1 SELRXT A value of 1 selects RXT as source for TXT.
2 SETAV64 Debug only. A value of 1 tells PCI Xilinx there is always

data available.
3 SHORTSWAP Set to 1 if the host computer writes the first 16-bit word on

bits 16-31 of the PCI data bus (big-endian format) instead
of bits 0-15 as defined in the PCI bus specification.

4 DED Disable delay on start of outputting. If set, may cause

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public December 2004
Template: edt.dot Page 89

ragged ODV on start and underflows.
5 SETDNR A value of 1 stops transfer to device as if device set to

DNR.
6 PIOEN A value of 1 translates DMA channel buffers and enables

programmed I/O registers at 8 and 9. A write to 9
generates a 1 clock inside ODV.

7 SETIDV Set input data valid (used for debug).

PLL Programming Register (PCI CDa only)

Size 8-bit

I/O read-write

Address 0x20

Access EDT_SS_PLL_CTL

Comments The program set_ss_vco uses this register to program the serial interface
of the PLL.

Bit Name Description
3-0 PLL_STROBE Connected to the strobe inputs of PLL 3 to 0, respectively.
5-4 Not used.
6 PLL_DATA Connected to PLL serial data input.
7 PLL_SCLK Connected to PLL serial clock input.

PLL Divider Register (PCI CDa only)

Size 8-bit

I/O read-only

Address 0x24, 0x25

Access EDT_SS_PLL0_CLK, EDT_SS_PLL0_X

Comments This register is set by set_ss_vco. It is a post-scalar divider used to
achieve lower frequencies than those at which the PLLs can be programmed.
After this division, the clocks are divided by two again to even the duty cycle.
The set_ss_vco considers all these effects. Set D7 in the Funct register to
enable.

Bit Name Description
15-0 PLLDIV Programmable post divider

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public December 2004
Template: edt.dot Page 90

Output Data Valid Delay Register (PCI CDa only)

Size 8-bit

I/O read-write

Address 0x28

Access ODV_DELAY

Bit Name Description
7-0 ODV_DELAY Set this register to the number of 16-bit words to hold off

output. Outgoing data backs up in FIFO, reducing or
eliminating ODV transitioning on start up.

LED Control Register

Size 8-bit

I/O read-write

Address 0x30

Access LED_CTL

Bit Name Description
1-0 LED0

LED1
Set according to the following table to select what drives
the LED:

LED1 LED0 Source
0 0 From LED signal. If you choose this

source, you must also set bit 2 in this
register.

0 1 IDV
1 0 DNR
1 1 RXT

2 LED2 Set to 1 to turn LED on, only when LED0 and LED1 are set
to 0 (see above chart).

PCI CD and PCI CDa

Document Number: 008-00965-06 EDT Public December 2004
Template: edt.dot Page 91

Specifications
PCI Bus Compliance
Number of Slots 1
Transfer Size PCI CD: Maximum 64 bytes per transfer

PCI CDa: Maximum 1024 bytes per transfer
DVMA master Yes
PCI Bus memory space Approximately 66 KB
Clock Rate PCI CD: 33 MHz

PCI CDa: 66 MHz

Device Data Transfer
Protocol Synchronous stream
Buffers Application specific

Software Drivers for Solaris 2.6+ (Intel and

SPARC platforms), Windows NT/2000/XP Version 4.0, AIX Version
4.3, Irex 6.5, and Linux Red Hat Version 5.1

Power 5 V at 1.5 A

Environmental

Temperature Operating: 10 to 40° C
Nonoperating: -20 to 60° C

Humidity Operating: 20 to 80% noncondensing at 40° C
Nonoperating: 95% noncondensing at 40°C

Physical

Dimensions 3.3” x 5.78” x 0.5”
Weight 3.5 oz

Table 16. PCI Bus Configurable DMA Interface Specifications

